electrum

Electrum Bitcoin wallet
git clone https://git.parazyd.org/electrum
Log | Files | Refs | Submodules

commit 328432f5f45ea12a22037adff133cb253c678896
parent 33b94cd60e5951aeffd0a51e004d3626d9d9a882
Author: ThomasV <thomasv@gitorious>
Date:   Mon, 31 Mar 2014 12:00:57 +0200

update bip32 derivations, using xpriv and xpub serialization format

Diffstat:
Mlib/bitcoin.py | 172+++++++++++++++++++++++++++++++++++++++++++++----------------------------------
1 file changed, 99 insertions(+), 73 deletions(-)

diff --git a/lib/bitcoin.py b/lib/bitcoin.py @@ -452,10 +452,7 @@ class EC_KEY(object): str_to_long = string_to_number P = generator - if len(pubkey)==33: #compressed - pk = Point( curve_secp256k1, str_to_long(pubkey[1:33]), ECC_YfromX(str_to_long(pubkey[1:33]), curve_secp256k1, pubkey[0]=='\x03')[0], _r ) - else: - pk = Point( curve_secp256k1, str_to_long(pubkey[1:33]), str_to_long(pubkey[33:65]), _r ) + pk = ser_to_point(pubkey) for i in range(len(msgs)): n = ecdsa.util.randrange( pow(2,256) ) @@ -524,17 +521,6 @@ class EC_KEY(object): random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) BIP32_PRIME = 0x80000000 -def bip32_init(seed): - import hmac - seed = seed.decode('hex') - I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() - - master_secret = I[0:32] - master_chain = I[32:] - - K, K_compressed = get_pubkeys_from_secret(master_secret) - return master_secret, master_chain, K, K_compressed - def get_pubkeys_from_secret(secret): # public key @@ -545,7 +531,6 @@ def get_pubkeys_from_secret(secret): return K, K_compressed - # Child private key derivation function (from master private key) # k = master private key (32 bytes) # c = master chain code (extra entropy for key derivation) (32 bytes) @@ -554,7 +539,7 @@ def get_pubkeys_from_secret(secret): # corresponding public key can NOT be determined without the master private key. # However, if n is positive, the resulting private key's corresponding # public key can be determined without the master private key. -def CKD(k, c, n): +def CKD_priv(k, c, n): import hmac from ecdsa.util import string_to_number, number_to_string order = generator_secp256k1.order() @@ -577,54 +562,107 @@ def CKD(k, c, n): # n = index of key we want to derive # This function allows us to find the nth public key, as long as n is # non-negative. If n is negative, we need the master private key to find it. -def CKD_prime(K, c, n): +def CKD_pub(cK, c, n): import hmac from ecdsa.util import string_to_number, number_to_string order = generator_secp256k1.order() - if n & BIP32_PRIME: raise - - K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) - K_compressed = GetPubKey(K_public_key.pubkey,True) - - I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() - + I = hmac.new(c, cK + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() curve = SECP256k1 - pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point + pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) - - K_n = public_key.to_string() - K_n_compressed = GetPubKey(public_key.pubkey,True) c_n = I[32:] + cK_n = GetPubKey(public_key.pubkey,True) + + return cK_n, c_n + + +def parse_xprv(xprv): + xprv = DecodeBase58Check( xprv ) + assert len(xprv) == 78 + assert xprv[0:4] == "0488ADE4".decode('hex') + depth = ord(xprv[4]) + fingerprint = xprv[5:9] + child_number = xprv[9:13] + c = xprv[13:13+32] + k = xprv[13+33:] + K, cK = get_pubkeys_from_secret(k) + key_id = hash_160(cK) + print "keyid", key_id.encode('hex') + print "address", hash_160_to_bc_address(key_id) + print "secret key", SecretToASecret(k, True) + - return K_n, K_n_compressed, c_n +def bip32_root(seed): + import hmac + seed = seed.decode('hex') + I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() + master_k = I[0:32] + master_c = I[32:] + K, cK = get_pubkeys_from_secret(master_k) + xprv = ("0488ADE4" + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k + xpub = ("0488B21E" + "00" + "00000000" + "00000000").decode("hex") + master_c + cK + return EncodeBase58Check(xprv), EncodeBase58Check(xpub) -def bip32_private_derivation(k, c, branch, sequence): +def bip32_private_derivation(xprv, branch, sequence): + xprv = DecodeBase58Check( xprv ) + assert len(xprv) == 78 + assert xprv[0:4] == "0488ADE4".decode('hex') assert sequence.startswith(branch) + depth = ord(xprv[4]) + fingerprint = xprv[5:9] + child_number = xprv[9:13] + c = xprv[13:13+32] + k = xprv[13+33:] sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue - n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) - k, c = CKD(k, c, n) - K, K_compressed = get_pubkeys_from_secret(k) - return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex') + i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) + parent_k = k + k, c = CKD_priv(k, c, i) + depth += 1 + + _, parent_cK = get_pubkeys_from_secret(parent_k) + fingerprint = hash_160(parent_cK)[0:4] + child_number = ("%08X"%i).decode('hex') + K, cK = get_pubkeys_from_secret(k) + xprv = "0488ADE4".decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k + xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK + return EncodeBase58Check(xprv), EncodeBase58Check(xpub) -def bip32_public_derivation(c, K, branch, sequence): + +def bip32_public_derivation(xpub, branch, sequence): + xpub = DecodeBase58Check( xpub ) + assert len(xpub) == 78 + assert xpub[0:4] == "0488B21E".decode('hex') assert sequence.startswith(branch) + depth = ord(xpub[4]) + fingerprint = xpub[5:9] + child_number = xpub[9:13] + c = xpub[13:13+32] + cK = xpub[13+32:] sequence = sequence[len(branch):] for n in sequence.split('/'): - n = int(n) - K, cK, c = CKD_prime(K, c, n) + if n == '': continue + i = int(n) + parent_cK = cK + cK, c = CKD_pub(cK, c, i) + depth += 1 + + fingerprint = hash_160(parent_cK)[0:4] + child_number = ("%08X"%i).decode('hex') + xpub = "0488B21E".decode('hex') + chr(depth) + fingerprint + child_number + c + cK + return EncodeBase58Check(xpub) + - return c.encode('hex'), K.encode('hex'), cK.encode('hex') def bip32_private_key(sequence, k, chain): for i in sequence: - k, chain = CKD(k, chain, i) + k, chain = CKD_priv(k, chain, i) return SecretToASecret(k, True) @@ -642,41 +680,28 @@ def test_bip32(seed, sequence): see https://en.bitcoin.it/wiki/BIP_0032_TestVectors """ - master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) - - print "secret key", master_secret.encode('hex') - print "chain code", master_chain.encode('hex') - - key_id = hash_160(master_public_key_compressed) - print "keyid", key_id.encode('hex') - print "base58" - print "address", hash_160_to_bc_address(key_id) - print "secret key", SecretToASecret(master_secret, True) + xprv, xpub = bip32_root(seed) + print xpub + print xprv + #parse_xprv(xprv) - k = master_secret - c = master_chain - - s = ['m'] + assert sequence[0:2] == "m/" + path = 'm' + sequence = sequence[2:] for n in sequence.split('/'): - s.append(n) - print "Chain [%s]" % '/'.join(s) + child_path = path + '/' + n + if n[-1] != "'": + xpub2 = bip32_public_derivation(xpub, path, child_path) + xprv, xpub = bip32_private_derivation(xprv, path, child_path) + if n[-1] != "'": + assert xpub == xpub2 - n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) - k0, c0 = CKD(k, c, n) - K0, K0_compressed = get_pubkeys_from_secret(k0) - - print "* Identifier" - print " * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed)) - print "* Secret Key" - print " * (hex)", k0.encode('hex') - print " * (wif)", SecretToASecret(k0, True) + path = child_path + print path + print xpub + print xprv - print "* Chain Code" - print " * (hex)", c0.encode('hex') - - k = k0 - c = c0 print "----" @@ -709,7 +734,8 @@ def test_crypto(): if __name__ == '__main__': - test_crypto() - #test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000") - #test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2") + #test_crypto() + test_bip32("000102030405060708090a0b0c0d0e0f", "m/0'/1/2'/2/1000000000") + test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","m/0/2147483647'/1/2147483646'/2") +