commit df8874ed9385b468ebed7130493b0e566514bf7a
parent 589f73bf573cdc976f68b17f1e316f9c65094f4a
Author: ThomasV <thomasv@gitorious>
Date: Tue, 12 Jun 2012 17:14:18 +0400
add aes and ecdsa sources
Diffstat:
A | aes/__init__.py | | | 656 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/__init__.py | | | 16 | ++++++++++++++++ |
A | ecdsa/curves.py | | | 41 | +++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/der.py | | | 190 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/ecdsa.py | | | 560 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/ellipticcurve.py | | | 290 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/keys.py | | | 252 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/numbertheory.py | | | 614 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/test_pyecdsa.py | | | 486 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | ecdsa/util.py | | | 215 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
10 files changed, 3320 insertions(+), 0 deletions(-)
diff --git a/aes/__init__.py b/aes/__init__.py
@@ -0,0 +1,656 @@
+#!/usr/bin/python
+#
+# aes.py: implements AES - Advanced Encryption Standard
+# from the SlowAES project, http://code.google.com/p/slowaes/
+#
+# Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ),
+# Alex Martelli ( http://www.aleax.it )
+#
+# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
+#
+# Licensed under the Apache License, Version 2.0
+# http://www.apache.org/licenses/
+#
+import os
+import sys
+import math
+
+def append_PKCS7_padding(s):
+ """return s padded to a multiple of 16-bytes by PKCS7 padding"""
+ numpads = 16 - (len(s)%16)
+ return s + numpads*chr(numpads)
+
+def strip_PKCS7_padding(s):
+ """return s stripped of PKCS7 padding"""
+ if len(s)%16 or not s:
+ raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
+ numpads = ord(s[-1])
+ if numpads > 16:
+ raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
+ return s[:-numpads]
+
+class AES(object):
+ # valid key sizes
+ keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
+
+ # Rijndael S-box
+ sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
+ 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
+ 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
+ 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
+ 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
+ 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
+ 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
+ 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
+ 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
+ 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
+ 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
+ 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
+ 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
+ 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
+ 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
+ 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
+ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
+ 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
+ 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
+ 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
+ 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
+ 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
+ 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
+ 0x54, 0xbb, 0x16]
+
+ # Rijndael Inverted S-box
+ rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
+ 0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
+ 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
+ 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
+ 0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
+ 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
+ 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
+ 0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
+ 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
+ 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
+ 0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
+ 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
+ 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
+ 0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
+ 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
+ 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
+ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
+ 0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
+ 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
+ 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
+ 0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
+ 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
+ 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
+ 0x21, 0x0c, 0x7d]
+
+ def getSBoxValue(self,num):
+ """Retrieves a given S-Box Value"""
+ return self.sbox[num]
+
+ def getSBoxInvert(self,num):
+ """Retrieves a given Inverted S-Box Value"""
+ return self.rsbox[num]
+
+ def rotate(self, word):
+ """ Rijndael's key schedule rotate operation.
+
+ Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
+ Word is an char list of size 4 (32 bits overall).
+ """
+ return word[1:] + word[:1]
+
+ # Rijndael Rcon
+ Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
+ 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
+ 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
+ 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
+ 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
+ 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
+ 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
+ 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
+ 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
+ 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
+ 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
+ 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
+ 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
+ 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
+ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
+ 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
+ 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
+ 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
+ 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
+ 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
+ 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
+ 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
+ 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
+ 0xe8, 0xcb ]
+
+ def getRconValue(self, num):
+ """Retrieves a given Rcon Value"""
+ return self.Rcon[num]
+
+ def core(self, word, iteration):
+ """Key schedule core."""
+ # rotate the 32-bit word 8 bits to the left
+ word = self.rotate(word)
+ # apply S-Box substitution on all 4 parts of the 32-bit word
+ for i in range(4):
+ word[i] = self.getSBoxValue(word[i])
+ # XOR the output of the rcon operation with i to the first part
+ # (leftmost) only
+ word[0] = word[0] ^ self.getRconValue(iteration)
+ return word
+
+ def expandKey(self, key, size, expandedKeySize):
+ """Rijndael's key expansion.
+
+ Expands an 128,192,256 key into an 176,208,240 bytes key
+
+ expandedKey is a char list of large enough size,
+ key is the non-expanded key.
+ """
+ # current expanded keySize, in bytes
+ currentSize = 0
+ rconIteration = 1
+ expandedKey = [0] * expandedKeySize
+
+ # set the 16, 24, 32 bytes of the expanded key to the input key
+ for j in range(size):
+ expandedKey[j] = key[j]
+ currentSize += size
+
+ while currentSize < expandedKeySize:
+ # assign the previous 4 bytes to the temporary value t
+ t = expandedKey[currentSize-4:currentSize]
+
+ # every 16,24,32 bytes we apply the core schedule to t
+ # and increment rconIteration afterwards
+ if currentSize % size == 0:
+ t = self.core(t, rconIteration)
+ rconIteration += 1
+ # For 256-bit keys, we add an extra sbox to the calculation
+ if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
+ for l in range(4): t[l] = self.getSBoxValue(t[l])
+
+ # We XOR t with the four-byte block 16,24,32 bytes before the new
+ # expanded key. This becomes the next four bytes in the expanded
+ # key.
+ for m in range(4):
+ expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
+ t[m]
+ currentSize += 1
+
+ return expandedKey
+
+ def addRoundKey(self, state, roundKey):
+ """Adds (XORs) the round key to the state."""
+ for i in range(16):
+ state[i] ^= roundKey[i]
+ return state
+
+ def createRoundKey(self, expandedKey, roundKeyPointer):
+ """Create a round key.
+ Creates a round key from the given expanded key and the
+ position within the expanded key.
+ """
+ roundKey = [0] * 16
+ for i in range(4):
+ for j in range(4):
+ roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
+ return roundKey
+
+ def galois_multiplication(self, a, b):
+ """Galois multiplication of 8 bit characters a and b."""
+ p = 0
+ for counter in range(8):
+ if b & 1: p ^= a
+ hi_bit_set = a & 0x80
+ a <<= 1
+ # keep a 8 bit
+ a &= 0xFF
+ if hi_bit_set:
+ a ^= 0x1b
+ b >>= 1
+ return p
+
+ #
+ # substitute all the values from the state with the value in the SBox
+ # using the state value as index for the SBox
+ #
+ def subBytes(self, state, isInv):
+ if isInv: getter = self.getSBoxInvert
+ else: getter = self.getSBoxValue
+ for i in range(16): state[i] = getter(state[i])
+ return state
+
+ # iterate over the 4 rows and call shiftRow() with that row
+ def shiftRows(self, state, isInv):
+ for i in range(4):
+ state = self.shiftRow(state, i*4, i, isInv)
+ return state
+
+ # each iteration shifts the row to the left by 1
+ def shiftRow(self, state, statePointer, nbr, isInv):
+ for i in range(nbr):
+ if isInv:
+ state[statePointer:statePointer+4] = \
+ state[statePointer+3:statePointer+4] + \
+ state[statePointer:statePointer+3]
+ else:
+ state[statePointer:statePointer+4] = \
+ state[statePointer+1:statePointer+4] + \
+ state[statePointer:statePointer+1]
+ return state
+
+ # galois multiplication of the 4x4 matrix
+ def mixColumns(self, state, isInv):
+ # iterate over the 4 columns
+ for i in range(4):
+ # construct one column by slicing over the 4 rows
+ column = state[i:i+16:4]
+ # apply the mixColumn on one column
+ column = self.mixColumn(column, isInv)
+ # put the values back into the state
+ state[i:i+16:4] = column
+
+ return state
+
+ # galois multiplication of 1 column of the 4x4 matrix
+ def mixColumn(self, column, isInv):
+ if isInv: mult = [14, 9, 13, 11]
+ else: mult = [2, 1, 1, 3]
+ cpy = list(column)
+ g = self.galois_multiplication
+
+ column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
+ g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
+ column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
+ g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
+ column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
+ g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
+ column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
+ g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
+ return column
+
+ # applies the 4 operations of the forward round in sequence
+ def aes_round(self, state, roundKey):
+ state = self.subBytes(state, False)
+ state = self.shiftRows(state, False)
+ state = self.mixColumns(state, False)
+ state = self.addRoundKey(state, roundKey)
+ return state
+
+ # applies the 4 operations of the inverse round in sequence
+ def aes_invRound(self, state, roundKey):
+ state = self.shiftRows(state, True)
+ state = self.subBytes(state, True)
+ state = self.addRoundKey(state, roundKey)
+ state = self.mixColumns(state, True)
+ return state
+
+ # Perform the initial operations, the standard round, and the final
+ # operations of the forward aes, creating a round key for each round
+ def aes_main(self, state, expandedKey, nbrRounds):
+ state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
+ i = 1
+ while i < nbrRounds:
+ state = self.aes_round(state,
+ self.createRoundKey(expandedKey, 16*i))
+ i += 1
+ state = self.subBytes(state, False)
+ state = self.shiftRows(state, False)
+ state = self.addRoundKey(state,
+ self.createRoundKey(expandedKey, 16*nbrRounds))
+ return state
+
+ # Perform the initial operations, the standard round, and the final
+ # operations of the inverse aes, creating a round key for each round
+ def aes_invMain(self, state, expandedKey, nbrRounds):
+ state = self.addRoundKey(state,
+ self.createRoundKey(expandedKey, 16*nbrRounds))
+ i = nbrRounds - 1
+ while i > 0:
+ state = self.aes_invRound(state,
+ self.createRoundKey(expandedKey, 16*i))
+ i -= 1
+ state = self.shiftRows(state, True)
+ state = self.subBytes(state, True)
+ state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
+ return state
+
+ # encrypts a 128 bit input block against the given key of size specified
+ def encrypt(self, iput, key, size):
+ output = [0] * 16
+ # the number of rounds
+ nbrRounds = 0
+ # the 128 bit block to encode
+ block = [0] * 16
+ # set the number of rounds
+ if size == self.keySize["SIZE_128"]: nbrRounds = 10
+ elif size == self.keySize["SIZE_192"]: nbrRounds = 12
+ elif size == self.keySize["SIZE_256"]: nbrRounds = 14
+ else: return None
+
+ # the expanded keySize
+ expandedKeySize = 16*(nbrRounds+1)
+
+ # Set the block values, for the block:
+ # a0,0 a0,1 a0,2 a0,3
+ # a1,0 a1,1 a1,2 a1,3
+ # a2,0 a2,1 a2,2 a2,3
+ # a3,0 a3,1 a3,2 a3,3
+ # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
+ #
+ # iterate over the columns
+ for i in range(4):
+ # iterate over the rows
+ for j in range(4):
+ block[(i+(j*4))] = iput[(i*4)+j]
+
+ # expand the key into an 176, 208, 240 bytes key
+ # the expanded key
+ expandedKey = self.expandKey(key, size, expandedKeySize)
+
+ # encrypt the block using the expandedKey
+ block = self.aes_main(block, expandedKey, nbrRounds)
+
+ # unmap the block again into the output
+ for k in range(4):
+ # iterate over the rows
+ for l in range(4):
+ output[(k*4)+l] = block[(k+(l*4))]
+ return output
+
+ # decrypts a 128 bit input block against the given key of size specified
+ def decrypt(self, iput, key, size):
+ output = [0] * 16
+ # the number of rounds
+ nbrRounds = 0
+ # the 128 bit block to decode
+ block = [0] * 16
+ # set the number of rounds
+ if size == self.keySize["SIZE_128"]: nbrRounds = 10
+ elif size == self.keySize["SIZE_192"]: nbrRounds = 12
+ elif size == self.keySize["SIZE_256"]: nbrRounds = 14
+ else: return None
+
+ # the expanded keySize
+ expandedKeySize = 16*(nbrRounds+1)
+
+ # Set the block values, for the block:
+ # a0,0 a0,1 a0,2 a0,3
+ # a1,0 a1,1 a1,2 a1,3
+ # a2,0 a2,1 a2,2 a2,3
+ # a3,0 a3,1 a3,2 a3,3
+ # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
+
+ # iterate over the columns
+ for i in range(4):
+ # iterate over the rows
+ for j in range(4):
+ block[(i+(j*4))] = iput[(i*4)+j]
+ # expand the key into an 176, 208, 240 bytes key
+ expandedKey = self.expandKey(key, size, expandedKeySize)
+ # decrypt the block using the expandedKey
+ block = self.aes_invMain(block, expandedKey, nbrRounds)
+ # unmap the block again into the output
+ for k in range(4):
+ # iterate over the rows
+ for l in range(4):
+ output[(k*4)+l] = block[(k+(l*4))]
+ return output
+
+
+class AESModeOfOperation(object):
+
+ aes = AES()
+
+ # structure of supported modes of operation
+ modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
+
+ # converts a 16 character string into a number array
+ def convertString(self, string, start, end, mode):
+ if end - start > 16: end = start + 16
+ if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
+ else: ar = []
+
+ i = start
+ j = 0
+ while len(ar) < end - start:
+ ar.append(0)
+ while i < end:
+ ar[j] = ord(string[i])
+ j += 1
+ i += 1
+ return ar
+
+ # Mode of Operation Encryption
+ # stringIn - Input String
+ # mode - mode of type modeOfOperation
+ # hexKey - a hex key of the bit length size
+ # size - the bit length of the key
+ # hexIV - the 128 bit hex Initilization Vector
+ def encrypt(self, stringIn, mode, key, size, IV):
+ if len(key) % size:
+ return None
+ if len(IV) % 16:
+ return None
+ # the AES input/output
+ plaintext = []
+ iput = [0] * 16
+ output = []
+ ciphertext = [0] * 16
+ # the output cipher string
+ cipherOut = []
+ # char firstRound
+ firstRound = True
+ if stringIn != None:
+ for j in range(int(math.ceil(float(len(stringIn))/16))):
+ start = j*16
+ end = j*16+16
+ if end > len(stringIn):
+ end = len(stringIn)
+ plaintext = self.convertString(stringIn, start, end, mode)
+ # print 'PT@%s:%s' % (j, plaintext)
+ if mode == self.modeOfOperation["CFB"]:
+ if firstRound:
+ output = self.aes.encrypt(IV, key, size)
+ firstRound = False
+ else:
+ output = self.aes.encrypt(iput, key, size)
+ for i in range(16):
+ if len(plaintext)-1 < i:
+ ciphertext[i] = 0 ^ output[i]
+ elif len(output)-1 < i:
+ ciphertext[i] = plaintext[i] ^ 0
+ elif len(plaintext)-1 < i and len(output) < i:
+ ciphertext[i] = 0 ^ 0
+ else:
+ ciphertext[i] = plaintext[i] ^ output[i]
+ for k in range(end-start):
+ cipherOut.append(ciphertext[k])
+ iput = ciphertext
+ elif mode == self.modeOfOperation["OFB"]:
+ if firstRound:
+ output = self.aes.encrypt(IV, key, size)
+ firstRound = False
+ else:
+ output = self.aes.encrypt(iput, key, size)
+ for i in range(16):
+ if len(plaintext)-1 < i:
+ ciphertext[i] = 0 ^ output[i]
+ elif len(output)-1 < i:
+ ciphertext[i] = plaintext[i] ^ 0
+ elif len(plaintext)-1 < i and len(output) < i:
+ ciphertext[i] = 0 ^ 0
+ else:
+ ciphertext[i] = plaintext[i] ^ output[i]
+ for k in range(end-start):
+ cipherOut.append(ciphertext[k])
+ iput = output
+ elif mode == self.modeOfOperation["CBC"]:
+ for i in range(16):
+ if firstRound:
+ iput[i] = plaintext[i] ^ IV[i]
+ else:
+ iput[i] = plaintext[i] ^ ciphertext[i]
+ # print 'IP@%s:%s' % (j, iput)
+ firstRound = False
+ ciphertext = self.aes.encrypt(iput, key, size)
+ # always 16 bytes because of the padding for CBC
+ for k in range(16):
+ cipherOut.append(ciphertext[k])
+ return mode, len(stringIn), cipherOut
+
+ # Mode of Operation Decryption
+ # cipherIn - Encrypted String
+ # originalsize - The unencrypted string length - required for CBC
+ # mode - mode of type modeOfOperation
+ # key - a number array of the bit length size
+ # size - the bit length of the key
+ # IV - the 128 bit number array Initilization Vector
+ def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
+ # cipherIn = unescCtrlChars(cipherIn)
+ if len(key) % size:
+ return None
+ if len(IV) % 16:
+ return None
+ # the AES input/output
+ ciphertext = []
+ iput = []
+ output = []
+ plaintext = [0] * 16
+ # the output plain text string
+ stringOut = ''
+ # char firstRound
+ firstRound = True
+ if cipherIn != None:
+ for j in range(int(math.ceil(float(len(cipherIn))/16))):
+ start = j*16
+ end = j*16+16
+ if j*16+16 > len(cipherIn):
+ end = len(cipherIn)
+ ciphertext = cipherIn[start:end]
+ if mode == self.modeOfOperation["CFB"]:
+ if firstRound:
+ output = self.aes.encrypt(IV, key, size)
+ firstRound = False
+ else:
+ output = self.aes.encrypt(iput, key, size)
+ for i in range(16):
+ if len(output)-1 < i:
+ plaintext[i] = 0 ^ ciphertext[i]
+ elif len(ciphertext)-1 < i:
+ plaintext[i] = output[i] ^ 0
+ elif len(output)-1 < i and len(ciphertext) < i:
+ plaintext[i] = 0 ^ 0
+ else:
+ plaintext[i] = output[i] ^ ciphertext[i]
+ for k in range(end-start):
+ stringOut += chr(plaintext[k])
+ iput = ciphertext
+ elif mode == self.modeOfOperation["OFB"]:
+ if firstRound:
+ output = self.aes.encrypt(IV, key, size)
+ firstRound = False
+ else:
+ output = self.aes.encrypt(iput, key, size)
+ for i in range(16):
+ if len(output)-1 < i:
+ plaintext[i] = 0 ^ ciphertext[i]
+ elif len(ciphertext)-1 < i:
+ plaintext[i] = output[i] ^ 0
+ elif len(output)-1 < i and len(ciphertext) < i:
+ plaintext[i] = 0 ^ 0
+ else:
+ plaintext[i] = output[i] ^ ciphertext[i]
+ for k in range(end-start):
+ stringOut += chr(plaintext[k])
+ iput = output
+ elif mode == self.modeOfOperation["CBC"]:
+ output = self.aes.decrypt(ciphertext, key, size)
+ for i in range(16):
+ if firstRound:
+ plaintext[i] = IV[i] ^ output[i]
+ else:
+ plaintext[i] = iput[i] ^ output[i]
+ firstRound = False
+ if originalsize is not None and originalsize < end:
+ for k in range(originalsize-start):
+ stringOut += chr(plaintext[k])
+ else:
+ for k in range(end-start):
+ stringOut += chr(plaintext[k])
+ iput = ciphertext
+ return stringOut
+
+
+def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
+ """encrypt `data` using `key`
+
+ `key` should be a string of bytes.
+
+ returned cipher is a string of bytes prepended with the initialization
+ vector.
+
+ """
+ key = map(ord, key)
+ if mode == AESModeOfOperation.modeOfOperation["CBC"]:
+ data = append_PKCS7_padding(data)
+ keysize = len(key)
+ assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
+ # create a new iv using random data
+ iv = [ord(i) for i in os.urandom(16)]
+ moo = AESModeOfOperation()
+ (mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
+ # With padding, the original length does not need to be known. It's a bad
+ # idea to store the original message length.
+ # prepend the iv.
+ return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))
+
+def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
+ """decrypt `data` using `key`
+
+ `key` should be a string of bytes.
+
+ `data` should have the initialization vector prepended as a string of
+ ordinal values.
+
+ """
+
+ key = map(ord, key)
+ keysize = len(key)
+ assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
+ # iv is first 16 bytes
+ iv = map(ord, data[:16])
+ data = map(ord, data[16:])
+ moo = AESModeOfOperation()
+ decr = moo.decrypt(data, None, mode, key, keysize, iv)
+ if mode == AESModeOfOperation.modeOfOperation["CBC"]:
+ decr = strip_PKCS7_padding(decr)
+ return decr
+
+def generateRandomKey(keysize):
+ """Generates a key from random data of length `keysize`.
+
+ The returned key is a string of bytes.
+
+ """
+ if keysize not in (16, 24, 32):
+ emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
+ raise ValueError, emsg % keysize
+ return os.urandom(keysize)
+
+if __name__ == "__main__":
+ moo = AESModeOfOperation()
+ cleartext = "This is a test!"
+ cypherkey = [143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84]
+ iv = [103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92]
+ mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
+ cypherkey, moo.aes.keySize["SIZE_128"], iv)
+ print 'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
+ decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
+ moo.aes.keySize["SIZE_128"], iv)
+ print decr
diff --git a/ecdsa/__init__.py b/ecdsa/__init__.py
@@ -0,0 +1,16 @@
+
+from keys import SigningKey, VerifyingKey, BadSignatureError, BadDigestError
+from curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p
+
+_hush_pyflakes = [SigningKey, VerifyingKey, BadSignatureError, BadDigestError,
+ NIST192p, NIST224p, NIST256p, NIST384p, NIST521p]
+del _hush_pyflakes
+
+# This code comes from http://github.com/warner/python-ecdsa
+
+try:
+ from _version import __version__ as v
+ __version__ = v
+ del v
+except ImportError:
+ __version__ = "UNKNOWN"
diff --git a/ecdsa/curves.py b/ecdsa/curves.py
@@ -0,0 +1,41 @@
+import der, ecdsa
+
+class UnknownCurveError(Exception):
+ pass
+
+def orderlen(order):
+ return (1+len("%x"%order))//2 # bytes
+
+# the NIST curves
+class Curve:
+ def __init__(self, name, curve, generator, oid):
+ self.name = name
+ self.curve = curve
+ self.generator = generator
+ self.order = generator.order()
+ self.baselen = orderlen(self.order)
+ self.verifying_key_length = 2*self.baselen
+ self.signature_length = 2*self.baselen
+ self.oid = oid
+ self.encoded_oid = der.encode_oid(*oid)
+
+NIST192p = Curve("NIST192p", ecdsa.curve_192, ecdsa.generator_192,
+ (1, 2, 840, 10045, 3, 1, 1))
+NIST224p = Curve("NIST224p", ecdsa.curve_224, ecdsa.generator_224,
+ (1, 3, 132, 0, 33))
+NIST256p = Curve("NIST256p", ecdsa.curve_256, ecdsa.generator_256,
+ (1, 2, 840, 10045, 3, 1, 7))
+NIST384p = Curve("NIST384p", ecdsa.curve_384, ecdsa.generator_384,
+ (1, 3, 132, 0, 34))
+NIST521p = Curve("NIST521p", ecdsa.curve_521, ecdsa.generator_521,
+ (1, 3, 132, 0, 35))
+
+curves = [NIST192p, NIST224p, NIST256p, NIST384p, NIST521p]
+
+def find_curve(oid_curve):
+ for c in curves:
+ if c.oid == oid_curve:
+ return c
+ raise UnknownCurveError("I don't know about the curve with oid %s."
+ "I only know about these: %s" %
+ (oid_curve, [c.name for c in curves]))
diff --git a/ecdsa/der.py b/ecdsa/der.py
@@ -0,0 +1,190 @@
+import binascii
+import base64
+
+class UnexpectedDER(Exception):
+ pass
+
+def encode_constructed(tag, value):
+ return chr(0xa0+tag) + encode_length(len(value)) + value
+def encode_integer(r):
+ assert r >= 0 # can't support negative numbers yet
+ h = "%x" % r
+ if len(h)%2:
+ h = "0" + h
+ s = binascii.unhexlify(h)
+ if ord(s[0]) <= 0x7f:
+ return "\x02" + chr(len(s)) + s
+ else:
+ # DER integers are two's complement, so if the first byte is
+ # 0x80-0xff then we need an extra 0x00 byte to prevent it from
+ # looking negative.
+ return "\x02" + chr(len(s)+1) + "\x00" + s
+
+def encode_bitstring(s):
+ return "\x03" + encode_length(len(s)) + s
+def encode_octet_string(s):
+ return "\x04" + encode_length(len(s)) + s
+def encode_oid(first, second, *pieces):
+ assert first <= 2
+ assert second <= 39
+ encoded_pieces = [chr(40*first+second)] + [encode_number(p)
+ for p in pieces]
+ body = "".join(encoded_pieces)
+ return "\x06" + encode_length(len(body)) + body
+def encode_sequence(*encoded_pieces):
+ total_len = sum([len(p) for p in encoded_pieces])
+ return "\x30" + encode_length(total_len) + "".join(encoded_pieces)
+def encode_number(n):
+ b128_digits = []
+ while n:
+ b128_digits.insert(0, (n & 0x7f) | 0x80)
+ n = n >> 7
+ if not b128_digits:
+ b128_digits.append(0)
+ b128_digits[-1] &= 0x7f
+ return "".join([chr(d) for d in b128_digits])
+
+def remove_constructed(string):
+ s0 = ord(string[0])
+ if (s0 & 0xe0) != 0xa0:
+ raise UnexpectedDER("wanted constructed tag (0xa0-0xbf), got 0x%02x"
+ % s0)
+ tag = s0 & 0x1f
+ length, llen = read_length(string[1:])
+ body = string[1+llen:1+llen+length]
+ rest = string[1+llen+length:]
+ return tag, body, rest
+
+def remove_sequence(string):
+ if not string.startswith("\x30"):
+ raise UnexpectedDER("wanted sequence (0x30), got 0x%02x" %
+ ord(string[0]))
+ length, lengthlength = read_length(string[1:])
+ endseq = 1+lengthlength+length
+ return string[1+lengthlength:endseq], string[endseq:]
+
+def remove_octet_string(string):
+ if not string.startswith("\x04"):
+ raise UnexpectedDER("wanted octetstring (0x04), got 0x%02x" %
+ ord(string[0]))
+ length, llen = read_length(string[1:])
+ body = string[1+llen:1+llen+length]
+ rest = string[1+llen+length:]
+ return body, rest
+
+def remove_object(string):
+ if not string.startswith("\x06"):
+ raise UnexpectedDER("wanted object (0x06), got 0x%02x" %
+ ord(string[0]))
+ length, lengthlength = read_length(string[1:])
+ body = string[1+lengthlength:1+lengthlength+length]
+ rest = string[1+lengthlength+length:]
+ numbers = []
+ while body:
+ n, ll = read_number(body)
+ numbers.append(n)
+ body = body[ll:]
+ n0 = numbers.pop(0)
+ first = n0//40
+ second = n0-(40*first)
+ numbers.insert(0, first)
+ numbers.insert(1, second)
+ return tuple(numbers), rest
+
+def remove_integer(string):
+ if not string.startswith("\x02"):
+ raise UnexpectedDER("wanted integer (0x02), got 0x%02x" %
+ ord(string[0]))
+ length, llen = read_length(string[1:])
+ numberbytes = string[1+llen:1+llen+length]
+ rest = string[1+llen+length:]
+ assert ord(numberbytes[0]) < 0x80 # can't support negative numbers yet
+ return int(binascii.hexlify(numberbytes), 16), rest
+
+def read_number(string):
+ number = 0
+ llen = 0
+ # base-128 big endian, with b7 set in all but the last byte
+ while True:
+ if llen > len(string):
+ raise UnexpectedDER("ran out of length bytes")
+ number = number << 7
+ d = ord(string[llen])
+ number += (d & 0x7f)
+ llen += 1
+ if not d & 0x80:
+ break
+ return number, llen
+
+def encode_length(l):
+ assert l >= 0
+ if l < 0x80:
+ return chr(l)
+ s = "%x" % l
+ if len(s)%2:
+ s = "0"+s
+ s = binascii.unhexlify(s)
+ llen = len(s)
+ return chr(0x80|llen) + s
+
+def read_length(string):
+ if not (ord(string[0]) & 0x80):
+ # short form
+ return (ord(string[0]) & 0x7f), 1
+ # else long-form: b0&0x7f is number of additional base256 length bytes,
+ # big-endian
+ llen = ord(string[0]) & 0x7f
+ if llen > len(string)-1:
+ raise UnexpectedDER("ran out of length bytes")
+ return int(binascii.hexlify(string[1:1+llen]), 16), 1+llen
+
+def remove_bitstring(string):
+ if not string.startswith("\x03"):
+ raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" %
+ ord(string[0]))
+ length, llen = read_length(string[1:])
+ body = string[1+llen:1+llen+length]
+ rest = string[1+llen+length:]
+ return body, rest
+
+# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING)
+
+
+# signatures: (from RFC3279)
+# ansi-X9-62 OBJECT IDENTIFIER ::= {
+# iso(1) member-body(2) us(840) 10045 }
+#
+# id-ecSigType OBJECT IDENTIFIER ::= {
+# ansi-X9-62 signatures(4) }
+# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
+# id-ecSigType 1 }
+## so 1,2,840,10045,4,1
+## so 0x42, .. ..
+
+# Ecdsa-Sig-Value ::= SEQUENCE {
+# r INTEGER,
+# s INTEGER }
+
+# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }
+#
+# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
+
+# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021)
+# secp224r1 OBJECT IDENTIFIER ::= {
+# iso(1) identified-organization(3) certicom(132) curve(0) 33 }
+# and the secp384r1 is (t=06,l=05,v=2b81040022)
+# secp384r1 OBJECT IDENTIFIER ::= {
+# iso(1) identified-organization(3) certicom(132) curve(0) 34 }
+
+def unpem(pem):
+ d = "".join([l.strip() for l in pem.split("\n")
+ if l and not l.startswith("-----")])
+ return base64.b64decode(d)
+def topem(der, name):
+ b64 = base64.b64encode(der)
+ lines = ["-----BEGIN %s-----\n" % name]
+ lines.extend([b64[start:start+64]+"\n"
+ for start in range(0, len(b64), 64)])
+ lines.append("-----END %s-----\n" % name)
+ return "".join(lines)
+
diff --git a/ecdsa/ecdsa.py b/ecdsa/ecdsa.py
@@ -0,0 +1,560 @@
+#! /usr/bin/env python
+"""
+Implementation of Elliptic-Curve Digital Signatures.
+
+Classes and methods for elliptic-curve signatures:
+private keys, public keys, signatures,
+NIST prime-modulus curves with modulus lengths of
+192, 224, 256, 384, and 521 bits.
+
+Example:
+
+ # (In real-life applications, you would probably want to
+ # protect against defects in SystemRandom.)
+ from random import SystemRandom
+ randrange = SystemRandom().randrange
+
+ # Generate a public/private key pair using the NIST Curve P-192:
+
+ g = generator_192
+ n = g.order()
+ secret = randrange( 1, n )
+ pubkey = Public_key( g, g * secret )
+ privkey = Private_key( pubkey, secret )
+
+ # Signing a hash value:
+
+ hash = randrange( 1, n )
+ signature = privkey.sign( hash, randrange( 1, n ) )
+
+ # Verifying a signature for a hash value:
+
+ if pubkey.verifies( hash, signature ):
+ print "Demo verification succeeded."
+ else:
+ print "*** Demo verification failed."
+
+ # Verification fails if the hash value is modified:
+
+ if pubkey.verifies( hash-1, signature ):
+ print "**** Demo verification failed to reject tampered hash."
+ else:
+ print "Demo verification correctly rejected tampered hash."
+
+Version of 2009.05.16.
+
+Revision history:
+ 2005.12.31 - Initial version.
+ 2008.11.25 - Substantial revisions introducing new classes.
+ 2009.05.16 - Warn against using random.randrange in real applications.
+ 2009.05.17 - Use random.SystemRandom by default.
+
+Written in 2005 by Peter Pearson and placed in the public domain.
+"""
+
+
+import ellipticcurve
+import numbertheory
+import random
+
+
+
+class Signature( object ):
+ """ECDSA signature.
+ """
+ def __init__( self, r, s ):
+ self.r = r
+ self.s = s
+
+
+
+class Public_key( object ):
+ """Public key for ECDSA.
+ """
+
+ def __init__( self, generator, point ):
+ """generator is the Point that generates the group,
+ point is the Point that defines the public key.
+ """
+
+ self.curve = generator.curve()
+ self.generator = generator
+ self.point = point
+ n = generator.order()
+ if not n:
+ raise RuntimeError, "Generator point must have order."
+ if not n * point == ellipticcurve.INFINITY:
+ raise RuntimeError, "Generator point order is bad."
+ if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
+ raise RuntimeError, "Generator point has x or y out of range."
+
+
+ def verifies( self, hash, signature ):
+ """Verify that signature is a valid signature of hash.
+ Return True if the signature is valid.
+ """
+
+ # From X9.62 J.3.1.
+
+ G = self.generator
+ n = G.order()
+ r = signature.r
+ s = signature.s
+ if r < 1 or r > n-1: return False
+ if s < 1 or s > n-1: return False
+ c = numbertheory.inverse_mod( s, n )
+ u1 = ( hash * c ) % n
+ u2 = ( r * c ) % n
+ xy = u1 * G + u2 * self.point
+ v = xy.x() % n
+ return v == r
+
+
+
+class Private_key( object ):
+ """Private key for ECDSA.
+ """
+
+ def __init__( self, public_key, secret_multiplier ):
+ """public_key is of class Public_key;
+ secret_multiplier is a large integer.
+ """
+
+ self.public_key = public_key
+ self.secret_multiplier = secret_multiplier
+
+ def sign( self, hash, random_k ):
+ """Return a signature for the provided hash, using the provided
+ random nonce. It is absolutely vital that random_k be an unpredictable
+ number in the range [1, self.public_key.point.order()-1]. If
+ an attacker can guess random_k, he can compute our private key from a
+ single signature. Also, if an attacker knows a few high-order
+ bits (or a few low-order bits) of random_k, he can compute our private
+ key from many signatures. The generation of nonces with adequate
+ cryptographic strength is very difficult and far beyond the scope
+ of this comment.
+
+ May raise RuntimeError, in which case retrying with a new
+ random value k is in order.
+ """
+
+ G = self.public_key.generator
+ n = G.order()
+ k = random_k % n
+ p1 = k * G
+ r = p1.x()
+ if r == 0: raise RuntimeError, "amazingly unlucky random number r"
+ s = ( numbertheory.inverse_mod( k, n ) * \
+ ( hash + ( self.secret_multiplier * r ) % n ) ) % n
+ if s == 0: raise RuntimeError, "amazingly unlucky random number s"
+ return Signature( r, s )
+
+
+
+def int_to_string( x ):
+ """Convert integer x into a string of bytes, as per X9.62."""
+ assert x >= 0
+ if x == 0: return chr(0)
+ result = ""
+ while x > 0:
+ q, r = divmod( x, 256 )
+ result = chr( r ) + result
+ x = q
+ return result
+
+
+def string_to_int( s ):
+ """Convert a string of bytes into an integer, as per X9.62."""
+ result = 0L
+ for c in s: result = 256 * result + ord( c )
+ return result
+
+
+def digest_integer( m ):
+ """Convert an integer into a string of bytes, compute
+ its SHA-1 hash, and convert the result to an integer."""
+ #
+ # I don't expect this function to be used much. I wrote
+ # it in order to be able to duplicate the examples
+ # in ECDSAVS.
+ #
+ from hashlib import sha1
+ return string_to_int( sha1( int_to_string( m ) ).digest() )
+
+
+def point_is_valid( generator, x, y ):
+ """Is (x,y) a valid public key based on the specified generator?"""
+
+ # These are the tests specified in X9.62.
+
+ n = generator.order()
+ curve = generator.curve()
+ if x < 0 or n <= x or y < 0 or n <= y:
+ return False
+ if not curve.contains_point( x, y ):
+ return False
+ if not n*ellipticcurve.Point( curve, x, y ) == \
+ ellipticcurve.INFINITY:
+ return False
+ return True
+
+
+
+# NIST Curve P-192:
+_p = 6277101735386680763835789423207666416083908700390324961279L
+_r = 6277101735386680763835789423176059013767194773182842284081L
+# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
+# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
+_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1L
+_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012L
+_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811L
+
+curve_192 = ellipticcurve.CurveFp( _p, -3, _b )
+generator_192 = ellipticcurve.Point( curve_192, _Gx, _Gy, _r )
+
+
+# NIST Curve P-224:
+_p = 26959946667150639794667015087019630673557916260026308143510066298881L
+_r = 26959946667150639794667015087019625940457807714424391721682722368061L
+# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
+# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
+_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4L
+_Gx =0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21L
+_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34L
+
+curve_224 = ellipticcurve.CurveFp( _p, -3, _b )
+generator_224 = ellipticcurve.Point( curve_224, _Gx, _Gy, _r )
+
+# NIST Curve P-256:
+_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951L
+_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369L
+# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
+# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
+_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604bL
+_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296L
+_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5L
+
+curve_256 = ellipticcurve.CurveFp( _p, -3, _b )
+generator_256 = ellipticcurve.Point( curve_256, _Gx, _Gy, _r )
+
+# NIST Curve P-384:
+_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319L
+_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643L
+# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
+# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
+_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aefL
+_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7L
+_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5fL
+
+curve_384 = ellipticcurve.CurveFp( _p, -3, _b )
+generator_384 = ellipticcurve.Point( curve_384, _Gx, _Gy, _r )
+
+# NIST Curve P-521:
+_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151L
+_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449L
+# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
+# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
+_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00L
+_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66L
+_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650L
+
+curve_521 = ellipticcurve.CurveFp( _p, -3, _b )
+generator_521 = ellipticcurve.Point( curve_521, _Gx, _Gy, _r )
+
+
+
+def __main__():
+ class TestFailure(Exception): pass
+
+ def test_point_validity( generator, x, y, expected ):
+ """generator defines the curve; is (x,y) a point on
+ this curve? "expected" is True if the right answer is Yes."""
+ if point_is_valid( generator, x, y ) == expected:
+ print "Point validity tested as expected."
+ else:
+ raise TestFailure("*** Point validity test gave wrong result.")
+
+ def test_signature_validity( Msg, Qx, Qy, R, S, expected ):
+ """Msg = message, Qx and Qy represent the base point on
+ elliptic curve c192, R and S are the signature, and
+ "expected" is True iff the signature is expected to be valid."""
+ pubk = Public_key( generator_192,
+ ellipticcurve.Point( curve_192, Qx, Qy ) )
+ got = pubk.verifies( digest_integer( Msg ), Signature( R, S ) )
+ if got == expected:
+ print "Signature tested as expected: got %s, expected %s." % \
+ ( got, expected )
+ else:
+ raise TestFailure("*** Signature test failed: got %s, expected %s." % \
+ ( got, expected ))
+
+ print "NIST Curve P-192:"
+
+ p192 = generator_192
+
+ # From X9.62:
+
+ d = 651056770906015076056810763456358567190100156695615665659L
+ Q = d * p192
+ if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5L:
+ raise TestFailure("*** p192 * d came out wrong.")
+ else:
+ print "p192 * d came out right."
+
+ k = 6140507067065001063065065565667405560006161556565665656654L
+ R = k * p192
+ if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
+ or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
+ raise TestFailure("*** k * p192 came out wrong.")
+ else:
+ print "k * p192 came out right."
+
+ u1 = 2563697409189434185194736134579731015366492496392189760599L
+ u2 = 6266643813348617967186477710235785849136406323338782220568L
+ temp = u1 * p192 + u2 * Q
+ if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
+ or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
+ raise TestFailure("*** u1 * p192 + u2 * Q came out wrong.")
+ else:
+ print "u1 * p192 + u2 * Q came out right."
+
+ e = 968236873715988614170569073515315707566766479517L
+ pubk = Public_key( generator_192, generator_192 * d )
+ privk = Private_key( pubk, d )
+ sig = privk.sign( e, k )
+ r, s = sig.r, sig.s
+ if r != 3342403536405981729393488334694600415596881826869351677613L \
+ or s != 5735822328888155254683894997897571951568553642892029982342L:
+ raise TestFailure("*** r or s came out wrong.")
+ else:
+ print "r and s came out right."
+
+ valid = pubk.verifies( e, sig )
+ if valid: print "Signature verified OK."
+ else: raise TestFailure("*** Signature failed verification.")
+
+ valid = pubk.verifies( e-1, sig )
+ if not valid: print "Forgery was correctly rejected."
+ else: raise TestFailure("*** Forgery was erroneously accepted.")
+
+ print "Testing point validity, as per ECDSAVS.pdf B.2.2:"
+
+ test_point_validity( \
+ p192, \
+ 0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83aL, \
+ 0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfcL, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73bL, \
+ 0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adbL, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792L, \
+ 0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6L, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6L, \
+ 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867fL, \
+ True )
+
+ test_point_validity(
+ p192, \
+ 0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70L, \
+ 0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4eL, \
+ True )
+
+ test_point_validity(
+ p192, \
+ 0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedcedL, \
+ 0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9L, \
+ True )
+
+ test_point_validity(
+ p192, \
+ 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15L, \
+ 0x7b482604199367f1f303f9ef627f922f97023e90eae08abfL, \
+ True )
+
+ test_point_validity(
+ p192, \
+ 0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798edaL, \
+ 0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835L, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12L, \
+ 0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2L, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43L, \
+ 0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caaL, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbcL, \
+ 0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6L, \
+ False )
+
+ test_point_validity(
+ p192, \
+ 0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253L, \
+ 0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923L, \
+ False )
+
+ print "Trying signature-verification tests from ECDSAVS.pdf B.2.4:"
+ print "P-192:"
+ Msg = 0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff798cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d158L
+ Qx = 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7acL
+ Qy = 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4L
+ R = 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916L
+ S = 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479L
+ test_signature_validity( Msg, Qx, Qy, R, S, True )
+
+ Msg = 0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db12e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db326ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63f4L
+ Qx = 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7L
+ Qy = 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7L
+ R = 0x8285261607283ba18f335026130bab31840dcfd9c3e555afL
+ S = 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06cL
+ test_signature_validity( Msg, Qx, Qy, R, S, True )
+
+ Msg = 0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cdd41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d303f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42ddL
+ Qx = 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7L
+ Qy = 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336L
+ R = 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91L
+ S = 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b563097ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd8aL
+ Qx = 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0bL
+ Qy = 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4L
+ R = 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1L
+ S = 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d39192e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bceae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072fbL
+ Qx = 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828L
+ Qy = 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ffL
+ R = 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796L
+ S = 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397ce15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aae98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca6dL
+ Qx = 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19fL
+ Qy = 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686L
+ R = 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325L
+ S = 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a278461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76e1L
+ Qx = 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04L
+ Qy = 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1L
+ R = 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1cL
+ S = 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6ba2L
+ Qx = 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaaL
+ Qy = 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3eL
+ R = 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955L
+ S = 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc910250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb658L
+ Qx = 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2fL
+ Qy = 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ecL
+ R = 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62L
+ S = 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e10288acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c90a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9ea387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c97aL
+ Qx = 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4aL
+ Qy = 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905L
+ R = 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73bL
+ S = 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5L
+ test_signature_validity( Msg, Qx, Qy, R, S, True )
+
+ Msg = 0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f6450d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d9064e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8ce1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd0456dL
+ Qx = 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecefL
+ Qy = 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1L
+ R = 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06L
+ S = 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dcL
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214eed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c440341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839d7L
+ Qx = 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753L
+ Qy = 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520L
+ R = 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668L
+ S = 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf9986670a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b41269bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160cef3L
+ Qx = 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835L
+ Qy = 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76bL
+ R = 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ffL
+ S = 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add5023572720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1L
+ Qx = 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0L
+ Qy = 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8daL
+ R = 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23L
+ S = 0x738421cf5e049159d69c57a915143e226cac8355e149afe9L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+ Msg = 0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5afa261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6db377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fbL
+ Qx = 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77L
+ Qy = 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22L
+ R = 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1L
+ S = 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9L
+ test_signature_validity( Msg, Qx, Qy, R, S, False )
+
+
+
+ print "Testing the example code:"
+
+ # Building a public/private key pair from the NIST Curve P-192:
+
+ g = generator_192
+ n = g.order()
+
+ # (random.SystemRandom is supposed to provide
+ # crypto-quality random numbers, but as Debian recently
+ # illustrated, a systems programmer can accidentally
+ # demolish this security, so in serious applications
+ # further precautions are appropriate.)
+
+ randrange = random.SystemRandom().randrange
+
+ secret = randrange( 1, n )
+ pubkey = Public_key( g, g * secret )
+ privkey = Private_key( pubkey, secret )
+
+ # Signing a hash value:
+
+ hash = randrange( 1, n )
+ signature = privkey.sign( hash, randrange( 1, n ) )
+
+ # Verifying a signature for a hash value:
+
+ if pubkey.verifies( hash, signature ):
+ print "Demo verification succeeded."
+ else:
+ raise TestFailure("*** Demo verification failed.")
+
+ if pubkey.verifies( hash-1, signature ):
+ raise TestFailure( "**** Demo verification failed to reject tampered hash.")
+ else:
+ print "Demo verification correctly rejected tampered hash."
+
+if __name__ == "__main__":
+ __main__()
diff --git a/ecdsa/ellipticcurve.py b/ecdsa/ellipticcurve.py
@@ -0,0 +1,290 @@
+#! /usr/bin/env python
+#
+# Implementation of elliptic curves, for cryptographic applications.
+#
+# This module doesn't provide any way to choose a random elliptic
+# curve, nor to verify that an elliptic curve was chosen randomly,
+# because one can simply use NIST's standard curves.
+#
+# Notes from X9.62-1998 (draft):
+# Nomenclature:
+# - Q is a public key.
+# The "Elliptic Curve Domain Parameters" include:
+# - q is the "field size", which in our case equals p.
+# - p is a big prime.
+# - G is a point of prime order (5.1.1.1).
+# - n is the order of G (5.1.1.1).
+# Public-key validation (5.2.2):
+# - Verify that Q is not the point at infinity.
+# - Verify that X_Q and Y_Q are in [0,p-1].
+# - Verify that Q is on the curve.
+# - Verify that nQ is the point at infinity.
+# Signature generation (5.3):
+# - Pick random k from [1,n-1].
+# Signature checking (5.4.2):
+# - Verify that r and s are in [1,n-1].
+#
+# Version of 2008.11.25.
+#
+# Revision history:
+# 2005.12.31 - Initial version.
+# 2008.11.25 - Change CurveFp.is_on to contains_point.
+#
+# Written in 2005 by Peter Pearson and placed in the public domain.
+
+import numbertheory
+
+class CurveFp( object ):
+ """Elliptic Curve over the field of integers modulo a prime."""
+ def __init__( self, p, a, b ):
+ """The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
+ self.__p = p
+ self.__a = a
+ self.__b = b
+
+ def p( self ):
+ return self.__p
+
+ def a( self ):
+ return self.__a
+
+ def b( self ):
+ return self.__b
+
+ def contains_point( self, x, y ):
+ """Is the point (x,y) on this curve?"""
+ return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
+
+
+
+class Point( object ):
+ """A point on an elliptic curve. Altering x and y is forbidding,
+ but they can be read by the x() and y() methods."""
+ def __init__( self, curve, x, y, order = None ):
+ """curve, x, y, order; order (optional) is the order of this point."""
+ self.__curve = curve
+ self.__x = x
+ self.__y = y
+ self.__order = order
+ # self.curve is allowed to be None only for INFINITY:
+ if self.__curve: assert self.__curve.contains_point( x, y )
+ if order: assert self * order == INFINITY
+
+ def __cmp__( self, other ):
+ """Return 0 if the points are identical, 1 otherwise."""
+ if self.__curve == other.__curve \
+ and self.__x == other.__x \
+ and self.__y == other.__y:
+ return 0
+ else:
+ return 1
+
+ def __add__( self, other ):
+ """Add one point to another point."""
+
+ # X9.62 B.3:
+
+ if other == INFINITY: return self
+ if self == INFINITY: return other
+ assert self.__curve == other.__curve
+ if self.__x == other.__x:
+ if ( self.__y + other.__y ) % self.__curve.p() == 0:
+ return INFINITY
+ else:
+ return self.double()
+
+ p = self.__curve.p()
+
+ l = ( ( other.__y - self.__y ) * \
+ numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p
+
+ x3 = ( l * l - self.__x - other.__x ) % p
+ y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
+
+ return Point( self.__curve, x3, y3 )
+
+ def __mul__( self, other ):
+ """Multiply a point by an integer."""
+
+ def leftmost_bit( x ):
+ assert x > 0
+ result = 1L
+ while result <= x: result = 2 * result
+ return result // 2
+
+ e = other
+ if self.__order: e = e % self.__order
+ if e == 0: return INFINITY
+ if self == INFINITY: return INFINITY
+ assert e > 0
+
+ # From X9.62 D.3.2:
+
+ e3 = 3 * e
+ negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
+ i = leftmost_bit( e3 ) // 2
+ result = self
+ # print "Multiplying %s by %d (e3 = %d):" % ( self, other, e3 )
+ while i > 1:
+ result = result.double()
+ if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
+ if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
+ # print ". . . i = %d, result = %s" % ( i, result )
+ i = i // 2
+
+ return result
+
+ def __rmul__( self, other ):
+ """Multiply a point by an integer."""
+
+ return self * other
+
+ def __str__( self ):
+ if self == INFINITY: return "infinity"
+ return "(%d,%d)" % ( self.__x, self.__y )
+
+ def double( self ):
+ """Return a new point that is twice the old."""
+
+ if self == INFINITY:
+ return INFINITY
+
+ # X9.62 B.3:
+
+ p = self.__curve.p()
+ a = self.__curve.a()
+
+ l = ( ( 3 * self.__x * self.__x + a ) * \
+ numbertheory.inverse_mod( 2 * self.__y, p ) ) % p
+
+ x3 = ( l * l - 2 * self.__x ) % p
+ y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
+
+ return Point( self.__curve, x3, y3 )
+
+ def x( self ):
+ return self.__x
+
+ def y( self ):
+ return self.__y
+
+ def curve( self ):
+ return self.__curve
+
+ def order( self ):
+ return self.__order
+
+
+# This one point is the Point At Infinity for all purposes:
+INFINITY = Point( None, None, None )
+
+def __main__():
+
+ class FailedTest(Exception): pass
+ def test_add( c, x1, y1, x2, y2, x3, y3 ):
+ """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
+ p1 = Point( c, x1, y1 )
+ p2 = Point( c, x2, y2 )
+ p3 = p1 + p2
+ print "%s + %s = %s" % ( p1, p2, p3 ),
+ if p3.x() != x3 or p3.y() != y3:
+ raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
+ else:
+ print " Good."
+
+ def test_double( c, x1, y1, x3, y3 ):
+ """We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
+ p1 = Point( c, x1, y1 )
+ p3 = p1.double()
+ print "%s doubled = %s" % ( p1, p3 ),
+ if p3.x() != x3 or p3.y() != y3:
+ raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
+ else:
+ print " Good."
+
+ def test_double_infinity( c ):
+ """We expect that on curve c, 2*INFINITY = INFINITY."""
+ p1 = INFINITY
+ p3 = p1.double()
+ print "%s doubled = %s" % ( p1, p3 ),
+ if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
+ raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
+ else:
+ print " Good."
+
+ def test_multiply( c, x1, y1, m, x3, y3 ):
+ """We expect that on curve c, m*(x1,y1) = (x3,y3)."""
+ p1 = Point( c, x1, y1 )
+ p3 = p1 * m
+ print "%s * %d = %s" % ( p1, m, p3 ),
+ if p3.x() != x3 or p3.y() != y3:
+ raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
+ else:
+ print " Good."
+
+
+ # A few tests from X9.62 B.3:
+
+ c = CurveFp( 23, 1, 1 )
+ test_add( c, 3, 10, 9, 7, 17, 20 )
+ test_double( c, 3, 10, 7, 12 )
+ test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.)
+ test_multiply( c, 3, 10, 2, 7, 12 )
+
+ test_double_infinity(c)
+
+ # From X9.62 I.1 (p. 96):
+
+ g = Point( c, 13, 7, 7 )
+
+ check = INFINITY
+ for i in range( 7 + 1 ):
+ p = ( i % 7 ) * g
+ print "%s * %d = %s, expected %s . . ." % ( g, i, p, check ),
+ if p == check:
+ print " Good."
+ else:
+ raise FailedTest("Bad.")
+ check = check + g
+
+ # NIST Curve P-192:
+ p = 6277101735386680763835789423207666416083908700390324961279L
+ r = 6277101735386680763835789423176059013767194773182842284081L
+ #s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
+ c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
+ b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1L
+ Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012L
+ Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811L
+
+ c192 = CurveFp( p, -3, b )
+ p192 = Point( c192, Gx, Gy, r )
+
+ # Checking against some sample computations presented
+ # in X9.62:
+
+ d = 651056770906015076056810763456358567190100156695615665659L
+ Q = d * p192
+ if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5L:
+ raise FailedTest("p192 * d came out wrong.")
+ else:
+ print "p192 * d came out right."
+
+ k = 6140507067065001063065065565667405560006161556565665656654L
+ R = k * p192
+ if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
+ or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
+ raise FailedTest("k * p192 came out wrong.")
+ else:
+ print "k * p192 came out right."
+
+ u1 = 2563697409189434185194736134579731015366492496392189760599L
+ u2 = 6266643813348617967186477710235785849136406323338782220568L
+ temp = u1 * p192 + u2 * Q
+ if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEADL \
+ or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835L:
+ raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
+ else:
+ print "u1 * p192 + u2 * Q came out right."
+
+if __name__ == "__main__":
+ __main__()
diff --git a/ecdsa/keys.py b/ecdsa/keys.py
@@ -0,0 +1,252 @@
+import binascii
+
+import ecdsa
+import der
+from curves import NIST192p, find_curve
+from util import string_to_number, number_to_string, randrange
+from util import sigencode_string, sigdecode_string
+from util import oid_ecPublicKey, encoded_oid_ecPublicKey
+from hashlib import sha1
+
+class BadSignatureError(Exception):
+ pass
+class BadDigestError(Exception):
+ pass
+
+class VerifyingKey:
+ def __init__(self, _error__please_use_generate=None):
+ if not _error__please_use_generate:
+ raise TypeError("Please use SigningKey.generate() to construct me")
+
+ @classmethod
+ def from_public_point(klass, point, curve=NIST192p, hashfunc=sha1):
+ self = klass(_error__please_use_generate=True)
+ self.curve = curve
+ self.default_hashfunc = hashfunc
+ self.pubkey = ecdsa.Public_key(curve.generator, point)
+ self.pubkey.order = curve.order
+ return self
+
+ @classmethod
+ def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
+ order = curve.order
+ assert len(string) == curve.verifying_key_length, \
+ (len(string), curve.verifying_key_length)
+ xs = string[:curve.baselen]
+ ys = string[curve.baselen:]
+ assert len(xs) == curve.baselen, (len(xs), curve.baselen)
+ assert len(ys) == curve.baselen, (len(ys), curve.baselen)
+ x = string_to_number(xs)
+ y = string_to_number(ys)
+ assert ecdsa.point_is_valid(curve.generator, x, y)
+ import ellipticcurve
+ point = ellipticcurve.Point(curve.curve, x, y, order)
+ return klass.from_public_point(point, curve, hashfunc)
+
+ @classmethod
+ def from_pem(klass, string):
+ return klass.from_der(der.unpem(string))
+
+ @classmethod
+ def from_der(klass, string):
+ # [[oid_ecPublicKey,oid_curve], point_str_bitstring]
+ s1,empty = der.remove_sequence(string)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER pubkey: %s" %
+ binascii.hexlify(empty))
+ s2,point_str_bitstring = der.remove_sequence(s1)
+ # s2 = oid_ecPublicKey,oid_curve
+ oid_pk, rest = der.remove_object(s2)
+ oid_curve, empty = der.remove_object(rest)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" %
+ binascii.hexlify(empty))
+ assert oid_pk == oid_ecPublicKey, (oid_pk, oid_ecPublicKey)
+ curve = find_curve(oid_curve)
+ point_str, empty = der.remove_bitstring(point_str_bitstring)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" %
+ binascii.hexlify(empty))
+ assert point_str.startswith("\x00\x04")
+ return klass.from_string(point_str[2:], curve)
+
+ def to_string(self):
+ # VerifyingKey.from_string(vk.to_string()) == vk as long as the
+ # curves are the same: the curve itself is not included in the
+ # serialized form
+ order = self.pubkey.order
+ x_str = number_to_string(self.pubkey.point.x(), order)
+ y_str = number_to_string(self.pubkey.point.y(), order)
+ return x_str + y_str
+
+ def to_pem(self):
+ return der.topem(self.to_der(), "PUBLIC KEY")
+
+ def to_der(self):
+ order = self.pubkey.order
+ x_str = number_to_string(self.pubkey.point.x(), order)
+ y_str = number_to_string(self.pubkey.point.y(), order)
+ point_str = "\x00\x04" + x_str + y_str
+ return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey,
+ self.curve.encoded_oid),
+ der.encode_bitstring(point_str))
+
+ def verify(self, signature, data, hashfunc=None, sigdecode=sigdecode_string):
+ hashfunc = hashfunc or self.default_hashfunc
+ digest = hashfunc(data).digest()
+ return self.verify_digest(signature, digest, sigdecode)
+
+ def verify_digest(self, signature, digest, sigdecode=sigdecode_string):
+ if len(digest) > self.curve.baselen:
+ raise BadDigestError("this curve (%s) is too short "
+ "for your digest (%d)" % (self.curve.name,
+ 8*len(digest)))
+ number = string_to_number(digest)
+ r, s = sigdecode(signature, self.pubkey.order)
+ sig = ecdsa.Signature(r, s)
+ if self.pubkey.verifies(number, sig):
+ return True
+ raise BadSignatureError
+
+class SigningKey:
+ def __init__(self, _error__please_use_generate=None):
+ if not _error__please_use_generate:
+ raise TypeError("Please use SigningKey.generate() to construct me")
+
+ @classmethod
+ def generate(klass, curve=NIST192p, entropy=None, hashfunc=sha1):
+ secexp = randrange(curve.order, entropy)
+ return klass.from_secret_exponent(secexp, curve, hashfunc)
+
+ # to create a signing key from a short (arbitrary-length) seed, convert
+ # that seed into an integer with something like
+ # secexp=util.randrange_from_seed__X(seed, curve.order), and then pass
+ # that integer into SigningKey.from_secret_exponent(secexp, curve)
+
+ @classmethod
+ def from_secret_exponent(klass, secexp, curve=NIST192p, hashfunc=sha1):
+ self = klass(_error__please_use_generate=True)
+ self.curve = curve
+ self.default_hashfunc = hashfunc
+ self.baselen = curve.baselen
+ n = curve.order
+ assert 1 <= secexp < n
+ pubkey_point = curve.generator*secexp
+ pubkey = ecdsa.Public_key(curve.generator, pubkey_point)
+ pubkey.order = n
+ self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve,
+ hashfunc)
+ self.privkey = ecdsa.Private_key(pubkey, secexp)
+ self.privkey.order = n
+ return self
+
+ @classmethod
+ def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
+ assert len(string) == curve.baselen, (len(string), curve.baselen)
+ secexp = string_to_number(string)
+ return klass.from_secret_exponent(secexp, curve, hashfunc)
+
+ @classmethod
+ def from_pem(klass, string, hashfunc=sha1):
+ # the privkey pem file has two sections: "EC PARAMETERS" and "EC
+ # PRIVATE KEY". The first is redundant.
+ privkey_pem = string[string.index("-----BEGIN EC PRIVATE KEY-----"):]
+ return klass.from_der(der.unpem(privkey_pem), hashfunc)
+ @classmethod
+ def from_der(klass, string, hashfunc=sha1):
+ # SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
+ # cont[1],bitstring])
+ s, empty = der.remove_sequence(string)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER privkey: %s" %
+ binascii.hexlify(empty))
+ one, s = der.remove_integer(s)
+ if one != 1:
+ raise der.UnexpectedDER("expected '1' at start of DER privkey,"
+ " got %d" % one)
+ privkey_str, s = der.remove_octet_string(s)
+ tag, curve_oid_str, s = der.remove_constructed(s)
+ if tag != 0:
+ raise der.UnexpectedDER("expected tag 0 in DER privkey,"
+ " got %d" % tag)
+ curve_oid, empty = der.remove_object(curve_oid_str)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER privkey "
+ "curve_oid: %s" % binascii.hexlify(empty))
+ curve = find_curve(curve_oid)
+
+ # we don't actually care about the following fields
+ #
+ #tag, pubkey_bitstring, s = der.remove_constructed(s)
+ #if tag != 1:
+ # raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d"
+ # % tag)
+ #pubkey_str = der.remove_bitstring(pubkey_bitstring)
+ #if empty != "":
+ # raise der.UnexpectedDER("trailing junk after DER privkey "
+ # "pubkeystr: %s" % binascii.hexlify(empty))
+
+ # our from_string method likes fixed-length privkey strings
+ if len(privkey_str) < curve.baselen:
+ privkey_str = "\x00"*(curve.baselen-len(privkey_str)) + privkey_str
+ return klass.from_string(privkey_str, curve, hashfunc)
+
+ def to_string(self):
+ secexp = self.privkey.secret_multiplier
+ s = number_to_string(secexp, self.privkey.order)
+ return s
+
+ def to_pem(self):
+ # TODO: "BEGIN ECPARAMETERS"
+ return der.topem(self.to_der(), "EC PRIVATE KEY")
+
+ def to_der(self):
+ # SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
+ # cont[1],bitstring])
+ encoded_vk = "\x00\x04" + self.get_verifying_key().to_string()
+ return der.encode_sequence(der.encode_integer(1),
+ der.encode_octet_string(self.to_string()),
+ der.encode_constructed(0, self.curve.encoded_oid),
+ der.encode_constructed(1, der.encode_bitstring(encoded_vk)),
+ )
+
+ def get_verifying_key(self):
+ return self.verifying_key
+
+ def sign(self, data, entropy=None, hashfunc=None, sigencode=sigencode_string):
+ """
+ hashfunc= should behave like hashlib.sha1 . The output length of the
+ hash (in bytes) must not be longer than the length of the curve order
+ (rounded up to the nearest byte), so using SHA256 with nist256p is
+ ok, but SHA256 with nist192p is not. (In the 2**-96ish unlikely event
+ of a hash output larger than the curve order, the hash will
+ effectively be wrapped mod n).
+
+ Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode,
+ or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256.
+ """
+
+ hashfunc = hashfunc or self.default_hashfunc
+ h = hashfunc(data).digest()
+ return self.sign_digest(h, entropy, sigencode)
+
+ def sign_digest(self, digest, entropy=None, sigencode=sigencode_string):
+ if len(digest) > self.curve.baselen:
+ raise BadDigestError("this curve (%s) is too short "
+ "for your digest (%d)" % (self.curve.name,
+ 8*len(digest)))
+ number = string_to_number(digest)
+ r, s = self.sign_number(number, entropy)
+ return sigencode(r, s, self.privkey.order)
+
+ def sign_number(self, number, entropy=None):
+ # returns a pair of numbers
+ order = self.privkey.order
+ # privkey.sign() may raise RuntimeError in the amazingly unlikely
+ # (2**-192) event that r=0 or s=0, because that would leak the key.
+ # We could re-try with a different 'k', but we couldn't test that
+ # code, so I choose to allow the signature to fail instead.
+ k = randrange(order, entropy)
+ assert 1 <= k < order
+ sig = self.privkey.sign(number, k)
+ return sig.r, sig.s
diff --git a/ecdsa/numbertheory.py b/ecdsa/numbertheory.py
@@ -0,0 +1,614 @@
+#! /usr/bin/env python
+#
+# Provide some simple capabilities from number theory.
+#
+# Version of 2008.11.14.
+#
+# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
+# Revision history:
+# 2008.11.14: Use pow( base, exponent, modulus ) for modular_exp.
+# Make gcd and lcm accept arbitrarly many arguments.
+
+
+
+import math
+import types
+
+
+class Error( Exception ):
+ """Base class for exceptions in this module."""
+ pass
+
+class SquareRootError( Error ):
+ pass
+
+class NegativeExponentError( Error ):
+ pass
+
+
+def modular_exp( base, exponent, modulus ):
+ "Raise base to exponent, reducing by modulus"
+ if exponent < 0:
+ raise NegativeExponentError( "Negative exponents (%d) not allowed" \
+ % exponent )
+ return pow( base, exponent, modulus )
+# result = 1L
+# x = exponent
+# b = base + 0L
+# while x > 0:
+# if x % 2 > 0: result = (result * b) % modulus
+# x = x // 2
+# b = ( b * b ) % modulus
+# return result
+
+
+def polynomial_reduce_mod( poly, polymod, p ):
+ """Reduce poly by polymod, integer arithmetic modulo p.
+
+ Polynomials are represented as lists of coefficients
+ of increasing powers of x."""
+
+ # This module has been tested only by extensive use
+ # in calculating modular square roots.
+
+ # Just to make this easy, require a monic polynomial:
+ assert polymod[-1] == 1
+
+ assert len( polymod ) > 1
+
+ while len( poly ) >= len( polymod ):
+ if poly[-1] != 0:
+ for i in range( 2, len( polymod ) + 1 ):
+ poly[-i] = ( poly[-i] - poly[-1] * polymod[-i] ) % p
+ poly = poly[0:-1]
+
+ return poly
+
+
+
+def polynomial_multiply_mod( m1, m2, polymod, p ):
+ """Polynomial multiplication modulo a polynomial over ints mod p.
+
+ Polynomials are represented as lists of coefficients
+ of increasing powers of x."""
+
+ # This is just a seat-of-the-pants implementation.
+
+ # This module has been tested only by extensive use
+ # in calculating modular square roots.
+
+ # Initialize the product to zero:
+
+ prod = ( len( m1 ) + len( m2 ) - 1 ) * [0]
+
+ # Add together all the cross-terms:
+
+ for i in range( len( m1 ) ):
+ for j in range( len( m2 ) ):
+ prod[i+j] = ( prod[i+j] + m1[i] * m2[j] ) % p
+
+ return polynomial_reduce_mod( prod, polymod, p )
+
+
+
+
+def polynomial_exp_mod( base, exponent, polymod, p ):
+ """Polynomial exponentiation modulo a polynomial over ints mod p.
+
+ Polynomials are represented as lists of coefficients
+ of increasing powers of x."""
+
+ # Based on the Handbook of Applied Cryptography, algorithm 2.227.
+
+ # This module has been tested only by extensive use
+ # in calculating modular square roots.
+
+ assert exponent < p
+
+ if exponent == 0: return [ 1 ]
+
+ G = base
+ k = exponent
+ if k%2 == 1: s = G
+ else: s = [ 1 ]
+
+ while k > 1:
+ k = k // 2
+ G = polynomial_multiply_mod( G, G, polymod, p )
+ if k%2 == 1: s = polynomial_multiply_mod( G, s, polymod, p )
+
+ return s
+
+
+
+def jacobi( a, n ):
+ """Jacobi symbol"""
+
+ # Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.
+
+ # This function has been tested by comparison with a small
+ # table printed in HAC, and by extensive use in calculating
+ # modular square roots.
+
+ assert n >= 3
+ assert n%2 == 1
+ a = a % n
+ if a == 0: return 0
+ if a == 1: return 1
+ a1, e = a, 0
+ while a1%2 == 0:
+ a1, e = a1//2, e+1
+ if e%2 == 0 or n%8 == 1 or n%8 == 7: s = 1
+ else: s = -1
+ if a1 == 1: return s
+ if n%4 == 3 and a1%4 == 3: s = -s
+ return s * jacobi( n % a1, a1 )
+
+
+
+
+def square_root_mod_prime( a, p ):
+ """Modular square root of a, mod p, p prime."""
+
+ # Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.
+
+ # This module has been tested for all values in [0,p-1] for
+ # every prime p from 3 to 1229.
+
+ assert 0 <= a < p
+ assert 1 < p
+
+ if a == 0: return 0
+ if p == 2: return a
+
+ jac = jacobi( a, p )
+ if jac == -1: raise SquareRootError( "%d has no square root modulo %d" \
+ % ( a, p ) )
+
+ if p % 4 == 3: return modular_exp( a, (p+1)//4, p )
+
+ if p % 8 == 5:
+ d = modular_exp( a, (p-1)//4, p )
+ if d == 1: return modular_exp( a, (p+3)//8, p )
+ if d == p-1: return ( 2 * a * modular_exp( 4*a, (p-5)//8, p ) ) % p
+ raise RuntimeError, "Shouldn't get here."
+
+ for b in range( 2, p ):
+ if jacobi( b*b-4*a, p ) == -1:
+ f = ( a, -b, 1 )
+ ff = polynomial_exp_mod( ( 0, 1 ), (p+1)//2, f, p )
+ assert ff[1] == 0
+ return ff[0]
+ raise RuntimeError, "No b found."
+
+
+
+def inverse_mod( a, m ):
+ """Inverse of a mod m."""
+
+ if a < 0 or m <= a: a = a % m
+
+ # From Ferguson and Schneier, roughly:
+
+ c, d = a, m
+ uc, vc, ud, vd = 1, 0, 0, 1
+ while c != 0:
+ q, c, d = divmod( d, c ) + ( c, )
+ uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
+
+ # At this point, d is the GCD, and ud*a+vd*m = d.
+ # If d == 1, this means that ud is a inverse.
+
+ assert d == 1
+ if ud > 0: return ud
+ else: return ud + m
+
+
+def gcd2(a, b):
+ """Greatest common divisor using Euclid's algorithm."""
+ while a:
+ a, b = b%a, a
+ return b
+
+
+def gcd( *a ):
+ """Greatest common divisor.
+
+ Usage: gcd( [ 2, 4, 6 ] )
+ or: gcd( 2, 4, 6 )
+ """
+
+ if len( a ) > 1: return reduce( gcd2, a )
+ if hasattr( a[0], "__iter__" ): return reduce( gcd2, a[0] )
+ return a[0]
+
+
+def lcm2(a,b):
+ """Least common multiple of two integers."""
+
+ return (a*b)//gcd(a,b)
+
+
+def lcm( *a ):
+ """Least common multiple.
+
+ Usage: lcm( [ 3, 4, 5 ] )
+ or: lcm( 3, 4, 5 )
+ """
+
+ if len( a ) > 1: return reduce( lcm2, a )
+ if hasattr( a[0], "__iter__" ): return reduce( lcm2, a[0] )
+ return a[0]
+
+
+
+def factorization( n ):
+ """Decompose n into a list of (prime,exponent) pairs."""
+
+ assert isinstance( n, types.IntType ) or isinstance( n, types.LongType )
+
+ if n < 2: return []
+
+ result = []
+ d = 2
+
+ # Test the small primes:
+
+ for d in smallprimes:
+ if d > n: break
+ q, r = divmod( n, d )
+ if r == 0:
+ count = 1
+ while d <= n:
+ n = q
+ q, r = divmod( n, d )
+ if r != 0: break
+ count = count + 1
+ result.append( ( d, count ) )
+
+ # If n is still greater than the last of our small primes,
+ # it may require further work:
+
+ if n > smallprimes[-1]:
+ if is_prime( n ): # If what's left is prime, it's easy:
+ result.append( ( n, 1 ) )
+ else: # Ugh. Search stupidly for a divisor:
+ d = smallprimes[-1]
+ while 1:
+ d = d + 2 # Try the next divisor.
+ q, r = divmod( n, d )
+ if q < d: break # n < d*d means we're done, n = 1 or prime.
+ if r == 0: # d divides n. How many times?
+ count = 1
+ n = q
+ while d <= n: # As long as d might still divide n,
+ q, r = divmod( n, d ) # see if it does.
+ if r != 0: break
+ n = q # It does. Reduce n, increase count.
+ count = count + 1
+ result.append( ( d, count ) )
+ if n > 1: result.append( ( n, 1 ) )
+
+ return result
+
+
+
+def phi( n ):
+ """Return the Euler totient function of n."""
+
+ assert isinstance( n, types.IntType ) or isinstance( n, types.LongType )
+
+ if n < 3: return 1
+
+ result = 1
+ ff = factorization( n )
+ for f in ff:
+ e = f[1]
+ if e > 1:
+ result = result * f[0] ** (e-1) * ( f[0] - 1 )
+ else:
+ result = result * ( f[0] - 1 )
+ return result
+
+
+def carmichael( n ):
+ """Return Carmichael function of n.
+
+ Carmichael(n) is the smallest integer x such that
+ m**x = 1 mod n for all m relatively prime to n.
+ """
+
+ return carmichael_of_factorized( factorization( n ) )
+
+
+def carmichael_of_factorized( f_list ):
+ """Return the Carmichael function of a number that is
+ represented as a list of (prime,exponent) pairs.
+ """
+
+ if len( f_list ) < 1: return 1
+
+ result = carmichael_of_ppower( f_list[0] )
+ for i in range( 1, len( f_list ) ):
+ result = lcm( result, carmichael_of_ppower( f_list[i] ) )
+
+ return result
+
+def carmichael_of_ppower( pp ):
+ """Carmichael function of the given power of the given prime.
+ """
+
+ p, a = pp
+ if p == 2 and a > 2: return 2**(a-2)
+ else: return (p-1) * p**(a-1)
+
+
+
+def order_mod( x, m ):
+ """Return the order of x in the multiplicative group mod m.
+ """
+
+ # Warning: this implementation is not very clever, and will
+ # take a long time if m is very large.
+
+ if m <= 1: return 0
+
+ assert gcd( x, m ) == 1
+
+ z = x
+ result = 1
+ while z != 1:
+ z = ( z * x ) % m
+ result = result + 1
+ return result
+
+
+def largest_factor_relatively_prime( a, b ):
+ """Return the largest factor of a relatively prime to b.
+ """
+
+ while 1:
+ d = gcd( a, b )
+ if d <= 1: break
+ b = d
+ while 1:
+ q, r = divmod( a, d )
+ if r > 0:
+ break
+ a = q
+ return a
+
+
+def kinda_order_mod( x, m ):
+ """Return the order of x in the multiplicative group mod m',
+ where m' is the largest factor of m relatively prime to x.
+ """
+
+ return order_mod( x, largest_factor_relatively_prime( m, x ) )
+
+
+def is_prime( n ):
+ """Return True if x is prime, False otherwise.
+
+ We use the Miller-Rabin test, as given in Menezes et al. p. 138.
+ This test is not exact: there are composite values n for which
+ it returns True.
+
+ In testing the odd numbers from 10000001 to 19999999,
+ about 66 composites got past the first test,
+ 5 got past the second test, and none got past the third.
+ Since factors of 2, 3, 5, 7, and 11 were detected during
+ preliminary screening, the number of numbers tested by
+ Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
+ = 4.57 million.
+ """
+
+ # (This is used to study the risk of false positives:)
+ global miller_rabin_test_count
+
+ miller_rabin_test_count = 0
+
+ if n <= smallprimes[-1]:
+ if n in smallprimes: return True
+ else: return False
+
+ if gcd( n, 2*3*5*7*11 ) != 1: return False
+
+ # Choose a number of iterations sufficient to reduce the
+ # probability of accepting a composite below 2**-80
+ # (from Menezes et al. Table 4.4):
+
+ t = 40
+ n_bits = 1 + int( math.log( n, 2 ) )
+ for k, tt in ( ( 100, 27 ),
+ ( 150, 18 ),
+ ( 200, 15 ),
+ ( 250, 12 ),
+ ( 300, 9 ),
+ ( 350, 8 ),
+ ( 400, 7 ),
+ ( 450, 6 ),
+ ( 550, 5 ),
+ ( 650, 4 ),
+ ( 850, 3 ),
+ ( 1300, 2 ),
+ ):
+ if n_bits < k: break
+ t = tt
+
+ # Run the test t times:
+
+ s = 0
+ r = n - 1
+ while ( r % 2 ) == 0:
+ s = s + 1
+ r = r // 2
+ for i in xrange( t ):
+ a = smallprimes[ i ]
+ y = modular_exp( a, r, n )
+ if y != 1 and y != n-1:
+ j = 1
+ while j <= s - 1 and y != n - 1:
+ y = modular_exp( y, 2, n )
+ if y == 1:
+ miller_rabin_test_count = i + 1
+ return False
+ j = j + 1
+ if y != n-1:
+ miller_rabin_test_count = i + 1
+ return False
+ return True
+
+
+def next_prime( starting_value ):
+ "Return the smallest prime larger than the starting value."
+
+ if starting_value < 2: return 2
+ result = ( starting_value + 1 ) | 1
+ while not is_prime( result ): result = result + 2
+ return result
+
+
+smallprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
+ 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
+ 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
+ 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
+ 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
+ 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
+ 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
+ 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
+ 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
+ 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
+ 701, 709, 719, 727, 733, 739, 743, 751, 757, 761,
+ 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
+ 839, 853, 857, 859, 863, 877, 881, 883, 887, 907,
+ 911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
+ 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
+ 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093,
+ 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
+ 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229]
+
+miller_rabin_test_count = 0
+
+def __main__():
+
+ # Making sure locally defined exceptions work:
+ # p = modular_exp( 2, -2, 3 )
+ # p = square_root_mod_prime( 2, 3 )
+
+
+ print "Testing gcd..."
+ assert gcd( 3*5*7, 3*5*11, 3*5*13 ) == 3*5
+ assert gcd( [ 3*5*7, 3*5*11, 3*5*13 ] ) == 3*5
+ assert gcd( 3 ) == 3
+
+ print "Testing lcm..."
+ assert lcm( 3, 5*3, 7*3 ) == 3*5*7
+ assert lcm( [ 3, 5*3, 7*3 ] ) == 3*5*7
+ assert lcm( 3 ) == 3
+
+ print "Testing next_prime..."
+ bigprimes = ( 999671,
+ 999683,
+ 999721,
+ 999727,
+ 999749,
+ 999763,
+ 999769,
+ 999773,
+ 999809,
+ 999853,
+ 999863,
+ 999883,
+ 999907,
+ 999917,
+ 999931,
+ 999953,
+ 999959,
+ 999961,
+ 999979,
+ 999983 )
+
+ for i in xrange( len( bigprimes ) - 1 ):
+ assert next_prime( bigprimes[i] ) == bigprimes[ i+1 ]
+
+ error_tally = 0
+
+ # Test the square_root_mod_prime function:
+
+ for p in smallprimes:
+ print "Testing square_root_mod_prime for modulus p = %d." % p
+ squares = []
+
+ for root in range( 0, 1+p//2 ):
+ sq = ( root * root ) % p
+ squares.append( sq )
+ calculated = square_root_mod_prime( sq, p )
+ if ( calculated * calculated ) % p != sq:
+ error_tally = error_tally + 1
+ print "Failed to find %d as sqrt( %d ) mod %d. Said %d." % \
+ ( root, sq, p, calculated )
+
+ for nonsquare in range( 0, p ):
+ if nonsquare not in squares:
+ try:
+ calculated = square_root_mod_prime( nonsquare, p )
+ except SquareRootError:
+ pass
+ else:
+ error_tally = error_tally + 1
+ print "Failed to report no root for sqrt( %d ) mod %d." % \
+ ( nonsquare, p )
+
+ # Test the jacobi function:
+ for m in range( 3, 400, 2 ):
+ print "Testing jacobi for modulus m = %d." % m
+ if is_prime( m ):
+ squares = []
+ for root in range( 1, m ):
+ if jacobi( root * root, m ) != 1:
+ error_tally = error_tally + 1
+ print "jacobi( %d * %d, %d ) != 1" % ( root, root, m )
+ squares.append( root * root % m )
+ for i in range( 1, m ):
+ if not i in squares:
+ if jacobi( i, m ) != -1:
+ error_tally = error_tally + 1
+ print "jacobi( %d, %d ) != -1" % ( i, m )
+ else: # m is not prime.
+ f = factorization( m )
+ for a in range( 1, m ):
+ c = 1
+ for i in f:
+ c = c * jacobi( a, i[0] ) ** i[1]
+ if c != jacobi( a, m ):
+ error_tally = error_tally + 1
+ print "%d != jacobi( %d, %d )" % ( c, a, m )
+
+
+# Test the inverse_mod function:
+ print "Testing inverse_mod . . ."
+ import random
+ n_tests = 0
+ for i in range( 100 ):
+ m = random.randint( 20, 10000 )
+ for j in range( 100 ):
+ a = random.randint( 1, m-1 )
+ if gcd( a, m ) == 1:
+ n_tests = n_tests + 1
+ inv = inverse_mod( a, m )
+ if inv <= 0 or inv >= m or ( a * inv ) % m != 1:
+ error_tally = error_tally + 1
+ print "%d = inverse_mod( %d, %d ) is wrong." % ( inv, a, m )
+ assert n_tests > 1000
+ print n_tests, " tests of inverse_mod completed."
+
+ class FailedTest(Exception): pass
+ print error_tally, "errors detected."
+ if error_tally != 0:
+ raise FailedTest("%d errors detected" % error_tally)
+
+if __name__ == '__main__':
+ __main__()
diff --git a/ecdsa/test_pyecdsa.py b/ecdsa/test_pyecdsa.py
@@ -0,0 +1,486 @@
+import unittest
+import os
+import time
+import shutil
+import subprocess
+from binascii import hexlify, unhexlify
+from hashlib import sha1, sha256
+
+from keys import SigningKey, VerifyingKey
+from keys import BadSignatureError
+import util
+from util import sigencode_der, sigencode_strings
+from util import sigdecode_der, sigdecode_strings
+from curves import Curve, UnknownCurveError
+from curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p
+import der
+
+class SubprocessError(Exception):
+ pass
+
+def run_openssl(cmd):
+ OPENSSL = "openssl"
+ p = subprocess.Popen([OPENSSL] + cmd.split(),
+ stdout=subprocess.PIPE,
+ stderr=subprocess.STDOUT)
+ stdout, ignored = p.communicate()
+ if p.returncode != 0:
+ raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" %
+ (OPENSSL, cmd, p.returncode, stdout))
+ return stdout
+
+BENCH = False
+
+class ECDSA(unittest.TestCase):
+ def test_basic(self):
+ priv = SigningKey.generate()
+ pub = priv.get_verifying_key()
+
+ data = "blahblah"
+ sig = priv.sign(data)
+
+ self.failUnless(pub.verify(sig, data))
+ self.failUnlessRaises(BadSignatureError, pub.verify, sig, data+"bad")
+
+ pub2 = VerifyingKey.from_string(pub.to_string())
+ self.failUnless(pub2.verify(sig, data))
+
+ def test_bad_usage(self):
+ # sk=SigningKey() is wrong
+ self.failUnlessRaises(TypeError, SigningKey)
+ self.failUnlessRaises(TypeError, VerifyingKey)
+
+ def test_lengths(self):
+ default = NIST192p
+ priv = SigningKey.generate()
+ pub = priv.get_verifying_key()
+ self.failUnlessEqual(len(pub.to_string()), default.verifying_key_length)
+ sig = priv.sign("data")
+ self.failUnlessEqual(len(sig), default.signature_length)
+ if BENCH:
+ print
+ for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p):
+ start = time.time()
+ priv = SigningKey.generate(curve=curve)
+ pub1 = priv.get_verifying_key()
+ keygen_time = time.time() - start
+ pub2 = VerifyingKey.from_string(pub1.to_string(), curve)
+ self.failUnlessEqual(pub1.to_string(), pub2.to_string())
+ self.failUnlessEqual(len(pub1.to_string()),
+ curve.verifying_key_length)
+ start = time.time()
+ sig = priv.sign("data")
+ sign_time = time.time() - start
+ self.failUnlessEqual(len(sig), curve.signature_length)
+ if BENCH:
+ start = time.time()
+ pub1.verify(sig, "data")
+ verify_time = time.time() - start
+ print "%s: siglen=%d, keygen=%0.3fs, sign=%0.3f, verify=%0.3f" \
+ % (curve.name, curve.signature_length,
+ keygen_time, sign_time, verify_time)
+
+ def test_serialize(self):
+ seed = "secret"
+ curve = NIST192p
+ secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order)
+ secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order)
+ self.failUnlessEqual(secexp1, secexp2)
+ priv1 = SigningKey.from_secret_exponent(secexp1, curve)
+ priv2 = SigningKey.from_secret_exponent(secexp2, curve)
+ self.failUnlessEqual(hexlify(priv1.to_string()),
+ hexlify(priv2.to_string()))
+ self.failUnlessEqual(priv1.to_pem(), priv2.to_pem())
+ pub1 = priv1.get_verifying_key()
+ pub2 = priv2.get_verifying_key()
+ data = "data"
+ sig1 = priv1.sign(data)
+ sig2 = priv2.sign(data)
+ self.failUnless(pub1.verify(sig1, data))
+ self.failUnless(pub2.verify(sig1, data))
+ self.failUnless(pub1.verify(sig2, data))
+ self.failUnless(pub2.verify(sig2, data))
+ self.failUnlessEqual(hexlify(pub1.to_string()),
+ hexlify(pub2.to_string()))
+
+ def test_nonrandom(self):
+ s = "all the entropy in the entire world, compressed into one line"
+ def not_much_entropy(numbytes):
+ return s[:numbytes]
+ # we control the entropy source, these two keys should be identical:
+ priv1 = SigningKey.generate(entropy=not_much_entropy)
+ priv2 = SigningKey.generate(entropy=not_much_entropy)
+ self.failUnlessEqual(hexlify(priv1.get_verifying_key().to_string()),
+ hexlify(priv2.get_verifying_key().to_string()))
+ # likewise, signatures should be identical. Obviously you'd never
+ # want to do this with keys you care about, because the secrecy of
+ # the private key depends upon using different random numbers for
+ # each signature
+ sig1 = priv1.sign("data", entropy=not_much_entropy)
+ sig2 = priv2.sign("data", entropy=not_much_entropy)
+ self.failUnlessEqual(hexlify(sig1), hexlify(sig2))
+
+ def failUnlessPrivkeysEqual(self, priv1, priv2):
+ self.failUnlessEqual(priv1.privkey.secret_multiplier,
+ priv2.privkey.secret_multiplier)
+ self.failUnlessEqual(priv1.privkey.public_key.generator,
+ priv2.privkey.public_key.generator)
+
+ def failIfPrivkeysEqual(self, priv1, priv2):
+ self.failIfEqual(priv1.privkey.secret_multiplier,
+ priv2.privkey.secret_multiplier)
+
+ def test_privkey_creation(self):
+ s = "all the entropy in the entire world, compressed into one line"
+ def not_much_entropy(numbytes):
+ return s[:numbytes]
+ priv1 = SigningKey.generate()
+ self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
+
+ priv1 = SigningKey.generate(curve=NIST224p)
+ self.failUnlessEqual(priv1.baselen, NIST224p.baselen)
+
+ priv1 = SigningKey.generate(entropy=not_much_entropy)
+ self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
+ priv2 = SigningKey.generate(entropy=not_much_entropy)
+ self.failUnlessEqual(priv2.baselen, NIST192p.baselen)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ priv1 = SigningKey.from_secret_exponent(secexp=3)
+ self.failUnlessEqual(priv1.baselen, NIST192p.baselen)
+ priv2 = SigningKey.from_secret_exponent(secexp=3)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p)
+ self.failUnlessEqual(priv1.baselen, NIST224p.baselen)
+
+ def test_privkey_strings(self):
+ priv1 = SigningKey.generate()
+ s1 = priv1.to_string()
+ self.failUnlessEqual(type(s1), str)
+ self.failUnlessEqual(len(s1), NIST192p.baselen)
+ priv2 = SigningKey.from_string(s1)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ s1 = priv1.to_pem()
+ self.failUnlessEqual(type(s1), str)
+ self.failUnless(s1.startswith("-----BEGIN EC PRIVATE KEY-----"))
+ self.failUnless(s1.strip().endswith("-----END EC PRIVATE KEY-----"))
+ priv2 = SigningKey.from_pem(s1)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ s1 = priv1.to_der()
+ self.failUnlessEqual(type(s1), str)
+ priv2 = SigningKey.from_der(s1)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ priv1 = SigningKey.generate(curve=NIST256p)
+ s1 = priv1.to_pem()
+ self.failUnlessEqual(type(s1), str)
+ self.failUnless(s1.startswith("-----BEGIN EC PRIVATE KEY-----"))
+ self.failUnless(s1.strip().endswith("-----END EC PRIVATE KEY-----"))
+ priv2 = SigningKey.from_pem(s1)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ s1 = priv1.to_der()
+ self.failUnlessEqual(type(s1), str)
+ priv2 = SigningKey.from_der(s1)
+ self.failUnlessPrivkeysEqual(priv1, priv2)
+
+ def failUnlessPubkeysEqual(self, pub1, pub2):
+ self.failUnlessEqual(pub1.pubkey.point, pub2.pubkey.point)
+ self.failUnlessEqual(pub1.pubkey.generator, pub2.pubkey.generator)
+ self.failUnlessEqual(pub1.curve, pub2.curve)
+
+ def test_pubkey_strings(self):
+ priv1 = SigningKey.generate()
+ pub1 = priv1.get_verifying_key()
+ s1 = pub1.to_string()
+ self.failUnlessEqual(type(s1), str)
+ self.failUnlessEqual(len(s1), NIST192p.verifying_key_length)
+ pub2 = VerifyingKey.from_string(s1)
+ self.failUnlessPubkeysEqual(pub1, pub2)
+
+ priv1 = SigningKey.generate(curve=NIST256p)
+ pub1 = priv1.get_verifying_key()
+ s1 = pub1.to_string()
+ self.failUnlessEqual(type(s1), str)
+ self.failUnlessEqual(len(s1), NIST256p.verifying_key_length)
+ pub2 = VerifyingKey.from_string(s1, curve=NIST256p)
+ self.failUnlessPubkeysEqual(pub1, pub2)
+
+ pub1_der = pub1.to_der()
+ self.failUnlessEqual(type(pub1_der), str)
+ pub2 = VerifyingKey.from_der(pub1_der)
+ self.failUnlessPubkeysEqual(pub1, pub2)
+
+ self.failUnlessRaises(der.UnexpectedDER,
+ VerifyingKey.from_der, pub1_der+"junk")
+ badpub = VerifyingKey.from_der(pub1_der)
+ class FakeGenerator:
+ def order(self): return 123456789
+ badcurve = Curve("unknown", None, FakeGenerator(), (1,2,3,4,5,6))
+ badpub.curve = badcurve
+ badder = badpub.to_der()
+ self.failUnlessRaises(UnknownCurveError, VerifyingKey.from_der, badder)
+
+ pem = pub1.to_pem()
+ self.failUnlessEqual(type(pem), str)
+ self.failUnless(pem.startswith("-----BEGIN PUBLIC KEY-----"), pem)
+ self.failUnless(pem.strip().endswith("-----END PUBLIC KEY-----"), pem)
+ pub2 = VerifyingKey.from_pem(pem)
+ self.failUnlessPubkeysEqual(pub1, pub2)
+
+ def test_signature_strings(self):
+ priv1 = SigningKey.generate()
+ pub1 = priv1.get_verifying_key()
+ data = "data"
+
+ sig = priv1.sign(data)
+ self.failUnlessEqual(type(sig), str)
+ self.failUnlessEqual(len(sig), NIST192p.signature_length)
+ self.failUnless(pub1.verify(sig, data))
+
+ sig = priv1.sign(data, sigencode=sigencode_strings)
+ self.failUnlessEqual(type(sig), tuple)
+ self.failUnlessEqual(len(sig), 2)
+ self.failUnlessEqual(type(sig[0]), str)
+ self.failUnlessEqual(type(sig[1]), str)
+ self.failUnlessEqual(len(sig[0]), NIST192p.baselen)
+ self.failUnlessEqual(len(sig[1]), NIST192p.baselen)
+ self.failUnless(pub1.verify(sig, data, sigdecode=sigdecode_strings))
+
+ sig_der = priv1.sign(data, sigencode=sigencode_der)
+ self.failUnlessEqual(type(sig_der), str)
+ self.failUnless(pub1.verify(sig_der, data, sigdecode=sigdecode_der))
+
+ def test_hashfunc(self):
+ sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256)
+ data = "security level is 128 bits"
+ sig = sk.sign(data)
+ vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
+ curve=NIST256p, hashfunc=sha256)
+ self.failUnless(vk.verify(sig, data))
+
+ sk2 = SigningKey.generate(curve=NIST256p)
+ sig2 = sk2.sign(data, hashfunc=sha256)
+ vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(),
+ curve=NIST256p, hashfunc=sha256)
+ self.failUnless(vk2.verify(sig2, data))
+
+ vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
+ curve=NIST256p)
+ self.failUnless(vk3.verify(sig, data, hashfunc=sha256))
+
+
+class OpenSSL(unittest.TestCase):
+ # test interoperability with OpenSSL tools. Note that openssl's ECDSA
+ # sign/verify arguments changed between 0.9.8 and 1.0.0: the early
+ # versions require "-ecdsa-with-SHA1", the later versions want just
+ # "-SHA1" (or to leave out that argument entirely, which means the
+ # signature will use some default digest algorithm, probably determined
+ # by the key, probably always SHA1).
+ #
+ # openssl ecparam -name secp224r1 -genkey -out privkey.pem
+ # openssl ec -in privkey.pem -text -noout # get the priv/pub keys
+ # openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt
+ # openssl asn1parse -in data.sig -inform DER
+ # data.sig is 64 bytes, probably 56b plus ASN1 overhead
+ # openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $?
+ # openssl ec -in privkey.pem -pubout -out pubkey.pem
+ # openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der
+
+ def get_openssl_messagedigest_arg(self):
+ v = run_openssl("version")
+ # e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010",
+ # or "OpenSSL 0.9.8o 01 Jun 2010"
+ vs = v.split()[1].split(".")
+ if vs >= ["1","0","0"]:
+ return "-SHA1"
+ else:
+ return "-ecdsa-with-SHA1"
+
+ # sk: 1:OpenSSL->python 2:python->OpenSSL
+ # vk: 3:OpenSSL->python 4:python->OpenSSL
+ # sig: 5:OpenSSL->python 6:python->OpenSSL
+
+ def test_from_openssl_nist192p(self):
+ return self.do_test_from_openssl(NIST192p, "prime192v1")
+ def test_from_openssl_nist224p(self):
+ return self.do_test_from_openssl(NIST224p, "secp224r1")
+ def test_from_openssl_nist384p(self):
+ return self.do_test_from_openssl(NIST384p, "secp384r1")
+ def test_from_openssl_nist521p(self):
+ return self.do_test_from_openssl(NIST521p, "secp521r1")
+
+ def do_test_from_openssl(self, curve, curvename):
+ # OpenSSL: create sk, vk, sign.
+ # Python: read vk(3), checksig(5), read sk(1), sign, check
+ mdarg = self.get_openssl_messagedigest_arg()
+ if os.path.isdir("t"):
+ shutil.rmtree("t")
+ os.mkdir("t")
+ run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename)
+ run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem")
+ data = "data"
+ open("t/data.txt","wb").write(data)
+ run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg)
+ run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg)
+ pubkey_pem = open("t/pubkey.pem").read()
+ vk = VerifyingKey.from_pem(pubkey_pem) # 3
+ sig_der = open("t/data.sig","rb").read()
+ self.failUnless(vk.verify(sig_der, data, # 5
+ hashfunc=sha1, sigdecode=sigdecode_der))
+
+ sk = SigningKey.from_pem(open("t/privkey.pem").read()) # 1
+ sig = sk.sign(data)
+ self.failUnless(vk.verify(sig, data))
+
+ def test_to_openssl_nist192p(self):
+ self.do_test_to_openssl(NIST192p, "prime192v1")
+ def test_to_openssl_nist224p(self):
+ self.do_test_to_openssl(NIST224p, "secp224r1")
+ def test_to_openssl_nist384p(self):
+ self.do_test_to_openssl(NIST384p, "secp384r1")
+ def test_to_openssl_nist521p(self):
+ self.do_test_to_openssl(NIST521p, "secp521r1")
+
+ def do_test_to_openssl(self, curve, curvename):
+ # Python: create sk, vk, sign.
+ # OpenSSL: read vk(4), checksig(6), read sk(2), sign, check
+ mdarg = self.get_openssl_messagedigest_arg()
+ if os.path.isdir("t"):
+ shutil.rmtree("t")
+ os.mkdir("t")
+ sk = SigningKey.generate(curve=curve)
+ vk = sk.get_verifying_key()
+ data = "data"
+ open("t/pubkey.der","wb").write(vk.to_der()) # 4
+ open("t/pubkey.pem","wb").write(vk.to_pem()) # 4
+ sig_der = sk.sign(data, hashfunc=sha1, sigencode=sigencode_der)
+ open("t/data.sig","wb").write(sig_der) # 6
+ open("t/data.txt","wb").write(data)
+ open("t/baddata.txt","wb").write(data+"corrupt")
+
+ self.failUnlessRaises(SubprocessError, run_openssl,
+ "dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg)
+ run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg)
+
+ open("t/privkey.pem","wb").write(sk.to_pem()) # 2
+ run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg)
+ run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg)
+
+class DER(unittest.TestCase):
+ def test_oids(self):
+ oid_ecPublicKey = der.encode_oid(1, 2, 840, 10045, 2, 1)
+ self.failUnlessEqual(hexlify(oid_ecPublicKey), "06072a8648ce3d0201")
+ self.failUnlessEqual(hexlify(NIST224p.encoded_oid), "06052b81040021")
+ self.failUnlessEqual(hexlify(NIST256p.encoded_oid),
+ "06082a8648ce3d030107")
+ x = oid_ecPublicKey + "more"
+ x1, rest = der.remove_object(x)
+ self.failUnlessEqual(x1, (1, 2, 840, 10045, 2, 1))
+ self.failUnlessEqual(rest, "more")
+
+ def test_integer(self):
+ self.failUnlessEqual(der.encode_integer(0), "\x02\x01\x00")
+ self.failUnlessEqual(der.encode_integer(1), "\x02\x01\x01")
+ self.failUnlessEqual(der.encode_integer(127), "\x02\x01\x7f")
+ self.failUnlessEqual(der.encode_integer(128), "\x02\x02\x00\x80")
+ self.failUnlessEqual(der.encode_integer(256), "\x02\x02\x01\x00")
+ #self.failUnlessEqual(der.encode_integer(-1), "\x02\x01\xff")
+
+ def s(n): return der.remove_integer(der.encode_integer(n) + "junk")
+ self.failUnlessEqual(s(0), (0, "junk"))
+ self.failUnlessEqual(s(1), (1, "junk"))
+ self.failUnlessEqual(s(127), (127, "junk"))
+ self.failUnlessEqual(s(128), (128, "junk"))
+ self.failUnlessEqual(s(256), (256, "junk"))
+ self.failUnlessEqual(s(1234567890123456789012345678901234567890),
+ ( 1234567890123456789012345678901234567890,"junk"))
+
+ def test_number(self):
+ self.failUnlessEqual(der.encode_number(0), "\x00")
+ self.failUnlessEqual(der.encode_number(127), "\x7f")
+ self.failUnlessEqual(der.encode_number(128), "\x81\x00")
+ self.failUnlessEqual(der.encode_number(3*128+7), "\x83\x07")
+ #self.failUnlessEqual(der.read_number("\x81\x9b"+"more"), (155, 2))
+ #self.failUnlessEqual(der.encode_number(155), "\x81\x9b")
+ for n in (0, 1, 2, 127, 128, 3*128+7, 840, 10045): #, 155):
+ x = der.encode_number(n) + "more"
+ n1, llen = der.read_number(x)
+ self.failUnlessEqual(n1, n)
+ self.failUnlessEqual(x[llen:], "more")
+
+ def test_length(self):
+ self.failUnlessEqual(der.encode_length(0), "\x00")
+ self.failUnlessEqual(der.encode_length(127), "\x7f")
+ self.failUnlessEqual(der.encode_length(128), "\x81\x80")
+ self.failUnlessEqual(der.encode_length(255), "\x81\xff")
+ self.failUnlessEqual(der.encode_length(256), "\x82\x01\x00")
+ self.failUnlessEqual(der.encode_length(3*256+7), "\x82\x03\x07")
+ self.failUnlessEqual(der.read_length("\x81\x9b"+"more"), (155, 2))
+ self.failUnlessEqual(der.encode_length(155), "\x81\x9b")
+ for n in (0, 1, 2, 127, 128, 255, 256, 3*256+7, 155):
+ x = der.encode_length(n) + "more"
+ n1, llen = der.read_length(x)
+ self.failUnlessEqual(n1, n)
+ self.failUnlessEqual(x[llen:], "more")
+
+ def test_sequence(self):
+ x = der.encode_sequence("ABC", "DEF") + "GHI"
+ self.failUnlessEqual(x, "\x30\x06ABCDEFGHI")
+ x1, rest = der.remove_sequence(x)
+ self.failUnlessEqual(x1, "ABCDEF")
+ self.failUnlessEqual(rest, "GHI")
+
+ def test_constructed(self):
+ x = der.encode_constructed(0, NIST224p.encoded_oid)
+ self.failUnlessEqual(hexlify(x), "a007" + "06052b81040021")
+ x = der.encode_constructed(1, unhexlify("0102030a0b0c"))
+ self.failUnlessEqual(hexlify(x), "a106" + "0102030a0b0c")
+
+class Util(unittest.TestCase):
+ def test_trytryagain(self):
+ tta = util.randrange_from_seed__trytryagain
+ for i in range(1000):
+ seed = "seed-%d" % i
+ for order in (2**8-2, 2**8-1, 2**8, 2**8+1, 2**8+2,
+ 2**16-1, 2**16+1):
+ n = tta(seed, order)
+ self.failUnless(1 <= n < order, (1, n, order))
+ # this trytryagain *does* provide long-term stability
+ self.failUnlessEqual("%x"%(tta("seed", NIST224p.order)),
+ "6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc")
+
+ def test_randrange(self):
+ # util.randrange does not provide long-term stability: we might
+ # change the algorithm in the future.
+ for i in range(1000):
+ entropy = util.PRNG("seed-%d" % i)
+ for order in (2**8-2, 2**8-1, 2**8,
+ 2**16-1, 2**16+1,
+ ):
+ # that oddball 2**16+1 takes half our runtime
+ n = util.randrange(order, entropy=entropy)
+ self.failUnless(1 <= n < order, (1, n, order))
+
+ def OFF_test_prove_uniformity(self):
+ order = 2**8-2
+ counts = dict([(i, 0) for i in range(1, order)])
+ assert 0 not in counts
+ assert order not in counts
+ for i in range(1000000):
+ seed = "seed-%d" % i
+ n = util.randrange_from_seed__trytryagain(seed, order)
+ counts[n] += 1
+ # this technique should use the full range
+ self.failUnless(counts[order-1])
+ for i in range(1, order):
+ print "%3d: %s" % (i, "*"*(counts[i]//100))
+
+
+def __main__():
+ unittest.main()
+if __name__ == "__main__":
+ __main__()
diff --git a/ecdsa/util.py b/ecdsa/util.py
@@ -0,0 +1,215 @@
+
+import os
+import math
+import binascii
+from hashlib import sha256
+import der
+from curves import orderlen
+
+# RFC5480:
+# The "unrestricted" algorithm identifier is:
+# id-ecPublicKey OBJECT IDENTIFIER ::= {
+# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
+
+oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
+encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
+
+def randrange(order, entropy=None):
+ """Return a random integer k such that 1 <= k < order, uniformly
+ distributed across that range. For simplicity, this only behaves well if
+ 'order' is fairly close (but below) a power of 256. The try-try-again
+ algorithm we use takes longer and longer time (on average) to complete as
+ 'order' falls, rising to a maximum of avg=512 loops for the worst-case
+ (256**k)+1 . All of the standard curves behave well. There is a cutoff at
+ 10k loops (which raises RuntimeError) to prevent an infinite loop when
+ something is really broken like the entropy function not working.
+
+ Note that this function is not declared to be forwards-compatible: we may
+ change the behavior in future releases. The entropy= argument (which
+ should get a callable that behaves like os.entropy) can be used to
+ achieve stability within a given release (for repeatable unit tests), but
+ should not be used as a long-term-compatible key generation algorithm.
+ """
+ # we could handle arbitrary orders (even 256**k+1) better if we created
+ # candidates bit-wise instead of byte-wise, which would reduce the
+ # worst-case behavior to avg=2 loops, but that would be more complex. The
+ # change would be to round the order up to a power of 256, subtract one
+ # (to get 0xffff..), use that to get a byte-long mask for the top byte,
+ # generate the len-1 entropy bytes, generate one extra byte and mask off
+ # the top bits, then combine it with the rest. Requires jumping back and
+ # forth between strings and integers a lot.
+
+ if entropy is None:
+ entropy = os.urandom
+ assert order > 1
+ bytes = orderlen(order)
+ dont_try_forever = 10000 # gives about 2**-60 failures for worst case
+ while dont_try_forever > 0:
+ dont_try_forever -= 1
+ candidate = string_to_number(entropy(bytes)) + 1
+ if 1 <= candidate < order:
+ return candidate
+ continue
+ raise RuntimeError("randrange() tried hard but gave up, either something"
+ " is very wrong or you got realllly unlucky. Order was"
+ " %x" % order)
+
+class PRNG:
+ # this returns a callable which, when invoked with an integer N, will
+ # return N pseudorandom bytes. Note: this is a short-term PRNG, meant
+ # primarily for the needs of randrange_from_seed__trytryagain(), which
+ # only needs to run it a few times per seed. It does not provide
+ # protection against state compromise (forward security).
+ def __init__(self, seed):
+ self.generator = self.block_generator(seed)
+
+ def __call__(self, numbytes):
+ return "".join([self.generator.next() for i in range(numbytes)])
+
+ def block_generator(self, seed):
+ counter = 0
+ while True:
+ for byte in sha256("prng-%d-%s" % (counter, seed)).digest():
+ yield byte
+ counter += 1
+
+def randrange_from_seed__overshoot_modulo(seed, order):
+ # hash the data, then turn the digest into a number in [1,order).
+ #
+ # We use David-Sarah Hopwood's suggestion: turn it into a number that's
+ # sufficiently larger than the group order, then modulo it down to fit.
+ # This should give adequate (but not perfect) uniformity, and simple
+ # code. There are other choices: try-try-again is the main one.
+ base = PRNG(seed)(2*orderlen(order))
+ number = (int(binascii.hexlify(base), 16) % (order-1)) + 1
+ assert 1 <= number < order, (1, number, order)
+ return number
+
+def lsb_of_ones(numbits):
+ return (1 << numbits) - 1
+def bits_and_bytes(order):
+ bits = int(math.log(order-1, 2)+1)
+ bytes = bits // 8
+ extrabits = bits % 8
+ return bits, bytes, extrabits
+
+# the following randrange_from_seed__METHOD() functions take an
+# arbitrarily-sized secret seed and turn it into a number that obeys the same
+# range limits as randrange() above. They are meant for deriving consistent
+# signing keys from a secret rather than generating them randomly, for
+# example a protocol in which three signing keys are derived from a master
+# secret. You should use a uniformly-distributed unguessable seed with about
+# curve.baselen bytes of entropy. To use one, do this:
+# seed = os.urandom(curve.baselen) # or other starting point
+# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
+# sk = SigningKey.from_secret_exponent(secexp, curve)
+
+def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
+ # hash the seed, then turn the digest into a number in [1,order), but
+ # don't worry about trying to uniformly fill the range. This will lose,
+ # on average, four bits of entropy.
+ bits, bytes, extrabits = bits_and_bytes(order)
+ if extrabits:
+ bytes += 1
+ base = hashmod(seed).digest()[:bytes]
+ base = "\x00"*(bytes-len(base)) + base
+ number = 1+int(binascii.hexlify(base), 16)
+ assert 1 <= number < order
+ return number
+
+def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
+ # like string_to_randrange_truncate_bytes, but only lose an average of
+ # half a bit
+ bits = int(math.log(order-1, 2)+1)
+ maxbytes = (bits+7) // 8
+ base = hashmod(seed).digest()[:maxbytes]
+ base = "\x00"*(maxbytes-len(base)) + base
+ topbits = 8*maxbytes - bits
+ if topbits:
+ base = chr(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
+ number = 1+int(binascii.hexlify(base), 16)
+ assert 1 <= number < order
+ return number
+
+def randrange_from_seed__trytryagain(seed, order):
+ # figure out exactly how many bits we need (rounded up to the nearest
+ # bit), so we can reduce the chance of looping to less than 0.5 . This is
+ # specified to feed from a byte-oriented PRNG, and discards the
+ # high-order bits of the first byte as necessary to get the right number
+ # of bits. The average number of loops will range from 1.0 (when
+ # order=2**k-1) to 2.0 (when order=2**k+1).
+ assert order > 1
+ bits, bytes, extrabits = bits_and_bytes(order)
+ generate = PRNG(seed)
+ while True:
+ extrabyte = ""
+ if extrabits:
+ extrabyte = chr(ord(generate(1)) & lsb_of_ones(extrabits))
+ guess = string_to_number(extrabyte + generate(bytes)) + 1
+ if 1 <= guess < order:
+ return guess
+
+
+def number_to_string(num, order):
+ l = orderlen(order)
+ fmt_str = "%0" + str(2*l) + "x"
+ string = binascii.unhexlify(fmt_str % num)
+ assert len(string) == l, (len(string), l)
+ return string
+
+def string_to_number(string):
+ return int(binascii.hexlify(string), 16)
+
+def string_to_number_fixedlen(string, order):
+ l = orderlen(order)
+ assert len(string) == l, (len(string), l)
+ return int(binascii.hexlify(string), 16)
+
+# these methods are useful for the sigencode= argument to SK.sign() and the
+# sigdecode= argument to VK.verify(), and control how the signature is packed
+# or unpacked.
+
+def sigencode_strings(r, s, order):
+ r_str = number_to_string(r, order)
+ s_str = number_to_string(s, order)
+ return (r_str, s_str)
+
+def sigencode_string(r, s, order):
+ # for any given curve, the size of the signature numbers is
+ # fixed, so just use simple concatenation
+ r_str, s_str = sigencode_strings(r, s, order)
+ return r_str + s_str
+
+def sigencode_der(r, s, order):
+ return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
+
+
+def sigdecode_string(signature, order):
+ l = orderlen(order)
+ assert len(signature) == 2*l, (len(signature), 2*l)
+ r = string_to_number_fixedlen(signature[:l], order)
+ s = string_to_number_fixedlen(signature[l:], order)
+ return r, s
+
+def sigdecode_strings(rs_strings, order):
+ (r_str, s_str) = rs_strings
+ l = orderlen(order)
+ assert len(r_str) == l, (len(r_str), l)
+ assert len(s_str) == l, (len(s_str), l)
+ r = string_to_number_fixedlen(r_str, order)
+ s = string_to_number_fixedlen(s_str, order)
+ return r, s
+
+def sigdecode_der(sig_der, order):
+ #return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
+ rs_strings, empty = der.remove_sequence(sig_der)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER sig: %s" %
+ binascii.hexlify(empty))
+ r, rest = der.remove_integer(rs_strings)
+ s, empty = der.remove_integer(rest)
+ if empty != "":
+ raise der.UnexpectedDER("trailing junk after DER numbers: %s" %
+ binascii.hexlify(empty))
+ return r, s
+