commit fed86e92e2b107de7bc76c87b2ae14fb43041730
parent 3b616f1ecf7bb570c5d032a32d1d0c35795bcdb0
Author: ThomasV <thomasv1@gmx.de>
Date: Sun, 5 Jan 2014 00:11:15 -0800
Merge pull request #504 from wyager/master
Unnecessary definition
Diffstat:
1 file changed, 16 insertions(+), 5 deletions(-)
diff --git a/lib/bitcoin.py b/lib/bitcoin.py
@@ -388,7 +388,6 @@ def bip32_init(seed):
def get_pubkeys_from_secret(secret):
# public key
- curve = SECP256k1
private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
public_key = private_key.get_verifying_key()
K = public_key.to_string()
@@ -397,7 +396,14 @@ def get_pubkeys_from_secret(secret):
-
+# Child private key derivation function (from master private key)
+# k = master private key (32 bytes)
+# c = master chain code (extra entropy for key derivation) (32 bytes)
+# n = the index of the key we want to derive. (only 32 bits will be used)
+# If n is negative (i.e. the 32nd bit is set), the resulting private key's
+# corresponding public key can NOT be determined without the master private key.
+# However, if n is positive, the resulting private key's corresponding
+# public key can be determined without the master private key.
def CKD(k, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string
@@ -405,17 +411,22 @@ def CKD(k, c, n):
keypair = EC_KEY(string_to_number(k))
K = GetPubKey(keypair.pubkey,True)
- if n & BIP32_PRIME:
+ if n & BIP32_PRIME: # We want to make a "secret" address that can't be determined from K
data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex')
I = hmac.new(c, data, hashlib.sha512).digest()
- else:
+ else: # We want a "non-secret" address that can be determined from K
I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
c_n = I[32:]
return k_n, c_n
-
+# Child public key derivation function (from public key only)
+# K = master public key
+# c = master chain code
+# n = index of key we want to derive
+# This function allows us to find the nth public key, as long as n is
+# non-negative. If n is negative, we need the master private key to find it.
def CKD_prime(K, c, n):
import hmac
from ecdsa.util import string_to_number, number_to_string