electrum

Electrum Bitcoin wallet
git clone https://git.parazyd.org/electrum
Log | Files | Refs | Submodules

commit fed86e92e2b107de7bc76c87b2ae14fb43041730
parent 3b616f1ecf7bb570c5d032a32d1d0c35795bcdb0
Author: ThomasV <thomasv1@gmx.de>
Date:   Sun,  5 Jan 2014 00:11:15 -0800

Merge pull request #504 from wyager/master

Unnecessary definition
Diffstat:
Mlib/bitcoin.py | 21++++++++++++++++-----
1 file changed, 16 insertions(+), 5 deletions(-)

diff --git a/lib/bitcoin.py b/lib/bitcoin.py @@ -388,7 +388,6 @@ def bip32_init(seed): def get_pubkeys_from_secret(secret): # public key - curve = SECP256k1 private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) public_key = private_key.get_verifying_key() K = public_key.to_string() @@ -397,7 +396,14 @@ def get_pubkeys_from_secret(secret): - +# Child private key derivation function (from master private key) +# k = master private key (32 bytes) +# c = master chain code (extra entropy for key derivation) (32 bytes) +# n = the index of the key we want to derive. (only 32 bits will be used) +# If n is negative (i.e. the 32nd bit is set), the resulting private key's +# corresponding public key can NOT be determined without the master private key. +# However, if n is positive, the resulting private key's corresponding +# public key can be determined without the master private key. def CKD(k, c, n): import hmac from ecdsa.util import string_to_number, number_to_string @@ -405,17 +411,22 @@ def CKD(k, c, n): keypair = EC_KEY(string_to_number(k)) K = GetPubKey(keypair.pubkey,True) - if n & BIP32_PRIME: + if n & BIP32_PRIME: # We want to make a "secret" address that can't be determined from K data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex') I = hmac.new(c, data, hashlib.sha512).digest() - else: + else: # We want a "non-secret" address that can be determined from K I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) c_n = I[32:] return k_n, c_n - +# Child public key derivation function (from public key only) +# K = master public key +# c = master chain code +# n = index of key we want to derive +# This function allows us to find the nth public key, as long as n is +# non-negative. If n is negative, we need the master private key to find it. def CKD_prime(K, c, n): import hmac from ecdsa.util import string_to_number, number_to_string